Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  flcidc Structured version   Visualization version   GIF version

Theorem flcidc 39781
Description: Finite linear combinations with an indicator function. (Contributed by Stefan O'Rear, 5-Dec-2014.)
Hypotheses
Ref Expression
flcidc.f (𝜑𝐹 = (𝑗𝑆 ↦ if(𝑗 = 𝐾, 1, 0)))
flcidc.s (𝜑𝑆 ∈ Fin)
flcidc.k (𝜑𝐾𝑆)
flcidc.b ((𝜑𝑖𝑆) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
flcidc (𝜑 → Σ𝑖𝑆 ((𝐹𝑖) · 𝐵) = 𝐾 / 𝑖𝐵)
Distinct variable groups:   𝜑,𝑖,𝑗   𝑖,𝐹   𝑆,𝑖,𝑗   𝑖,𝐾,𝑗   𝐵,𝑗
Allowed substitution hints:   𝐵(𝑖)   𝐹(𝑗)

Proof of Theorem flcidc
StepHypRef Expression
1 flcidc.f . . . . . . . . 9 (𝜑𝐹 = (𝑗𝑆 ↦ if(𝑗 = 𝐾, 1, 0)))
21fveq1d 6674 . . . . . . . 8 (𝜑 → (𝐹𝑖) = ((𝑗𝑆 ↦ if(𝑗 = 𝐾, 1, 0))‘𝑖))
32adantr 483 . . . . . . 7 ((𝜑𝑖 ∈ {𝐾}) → (𝐹𝑖) = ((𝑗𝑆 ↦ if(𝑗 = 𝐾, 1, 0))‘𝑖))
4 flcidc.k . . . . . . . . . 10 (𝜑𝐾𝑆)
54snssd 4744 . . . . . . . . 9 (𝜑 → {𝐾} ⊆ 𝑆)
65sselda 3969 . . . . . . . 8 ((𝜑𝑖 ∈ {𝐾}) → 𝑖𝑆)
7 eqeq1 2827 . . . . . . . . . 10 (𝑗 = 𝑖 → (𝑗 = 𝐾𝑖 = 𝐾))
87ifbid 4491 . . . . . . . . 9 (𝑗 = 𝑖 → if(𝑗 = 𝐾, 1, 0) = if(𝑖 = 𝐾, 1, 0))
9 eqid 2823 . . . . . . . . 9 (𝑗𝑆 ↦ if(𝑗 = 𝐾, 1, 0)) = (𝑗𝑆 ↦ if(𝑗 = 𝐾, 1, 0))
10 1ex 10639 . . . . . . . . . 10 1 ∈ V
11 c0ex 10637 . . . . . . . . . 10 0 ∈ V
1210, 11ifex 4517 . . . . . . . . 9 if(𝑖 = 𝐾, 1, 0) ∈ V
138, 9, 12fvmpt 6770 . . . . . . . 8 (𝑖𝑆 → ((𝑗𝑆 ↦ if(𝑗 = 𝐾, 1, 0))‘𝑖) = if(𝑖 = 𝐾, 1, 0))
146, 13syl 17 . . . . . . 7 ((𝜑𝑖 ∈ {𝐾}) → ((𝑗𝑆 ↦ if(𝑗 = 𝐾, 1, 0))‘𝑖) = if(𝑖 = 𝐾, 1, 0))
153, 14eqtrd 2858 . . . . . 6 ((𝜑𝑖 ∈ {𝐾}) → (𝐹𝑖) = if(𝑖 = 𝐾, 1, 0))
16 elsni 4586 . . . . . . . 8 (𝑖 ∈ {𝐾} → 𝑖 = 𝐾)
1716iftrued 4477 . . . . . . 7 (𝑖 ∈ {𝐾} → if(𝑖 = 𝐾, 1, 0) = 1)
1817adantl 484 . . . . . 6 ((𝜑𝑖 ∈ {𝐾}) → if(𝑖 = 𝐾, 1, 0) = 1)
1915, 18eqtrd 2858 . . . . 5 ((𝜑𝑖 ∈ {𝐾}) → (𝐹𝑖) = 1)
2019oveq1d 7173 . . . 4 ((𝜑𝑖 ∈ {𝐾}) → ((𝐹𝑖) · 𝐵) = (1 · 𝐵))
21 flcidc.b . . . . . 6 ((𝜑𝑖𝑆) → 𝐵 ∈ ℂ)
226, 21syldan 593 . . . . 5 ((𝜑𝑖 ∈ {𝐾}) → 𝐵 ∈ ℂ)
2322mulid2d 10661 . . . 4 ((𝜑𝑖 ∈ {𝐾}) → (1 · 𝐵) = 𝐵)
2420, 23eqtrd 2858 . . 3 ((𝜑𝑖 ∈ {𝐾}) → ((𝐹𝑖) · 𝐵) = 𝐵)
2524sumeq2dv 15062 . 2 (𝜑 → Σ𝑖 ∈ {𝐾} ((𝐹𝑖) · 𝐵) = Σ𝑖 ∈ {𝐾}𝐵)
26 ax-1cn 10597 . . . . . 6 1 ∈ ℂ
27 0cn 10635 . . . . . 6 0 ∈ ℂ
2826, 27ifcli 4515 . . . . 5 if(𝑖 = 𝐾, 1, 0) ∈ ℂ
2915, 28eqeltrdi 2923 . . . 4 ((𝜑𝑖 ∈ {𝐾}) → (𝐹𝑖) ∈ ℂ)
3029, 22mulcld 10663 . . 3 ((𝜑𝑖 ∈ {𝐾}) → ((𝐹𝑖) · 𝐵) ∈ ℂ)
312adantr 483 . . . . . . 7 ((𝜑𝑖 ∈ (𝑆 ∖ {𝐾})) → (𝐹𝑖) = ((𝑗𝑆 ↦ if(𝑗 = 𝐾, 1, 0))‘𝑖))
32 eldifi 4105 . . . . . . . . 9 (𝑖 ∈ (𝑆 ∖ {𝐾}) → 𝑖𝑆)
3332adantl 484 . . . . . . . 8 ((𝜑𝑖 ∈ (𝑆 ∖ {𝐾})) → 𝑖𝑆)
3433, 13syl 17 . . . . . . 7 ((𝜑𝑖 ∈ (𝑆 ∖ {𝐾})) → ((𝑗𝑆 ↦ if(𝑗 = 𝐾, 1, 0))‘𝑖) = if(𝑖 = 𝐾, 1, 0))
3531, 34eqtrd 2858 . . . . . 6 ((𝜑𝑖 ∈ (𝑆 ∖ {𝐾})) → (𝐹𝑖) = if(𝑖 = 𝐾, 1, 0))
36 eldifn 4106 . . . . . . . . 9 (𝑖 ∈ (𝑆 ∖ {𝐾}) → ¬ 𝑖 ∈ {𝐾})
37 velsn 4585 . . . . . . . . 9 (𝑖 ∈ {𝐾} ↔ 𝑖 = 𝐾)
3836, 37sylnib 330 . . . . . . . 8 (𝑖 ∈ (𝑆 ∖ {𝐾}) → ¬ 𝑖 = 𝐾)
3938iffalsed 4480 . . . . . . 7 (𝑖 ∈ (𝑆 ∖ {𝐾}) → if(𝑖 = 𝐾, 1, 0) = 0)
4039adantl 484 . . . . . 6 ((𝜑𝑖 ∈ (𝑆 ∖ {𝐾})) → if(𝑖 = 𝐾, 1, 0) = 0)
4135, 40eqtrd 2858 . . . . 5 ((𝜑𝑖 ∈ (𝑆 ∖ {𝐾})) → (𝐹𝑖) = 0)
4241oveq1d 7173 . . . 4 ((𝜑𝑖 ∈ (𝑆 ∖ {𝐾})) → ((𝐹𝑖) · 𝐵) = (0 · 𝐵))
4333, 21syldan 593 . . . . 5 ((𝜑𝑖 ∈ (𝑆 ∖ {𝐾})) → 𝐵 ∈ ℂ)
4443mul02d 10840 . . . 4 ((𝜑𝑖 ∈ (𝑆 ∖ {𝐾})) → (0 · 𝐵) = 0)
4542, 44eqtrd 2858 . . 3 ((𝜑𝑖 ∈ (𝑆 ∖ {𝐾})) → ((𝐹𝑖) · 𝐵) = 0)
46 flcidc.s . . 3 (𝜑𝑆 ∈ Fin)
475, 30, 45, 46fsumss 15084 . 2 (𝜑 → Σ𝑖 ∈ {𝐾} ((𝐹𝑖) · 𝐵) = Σ𝑖𝑆 ((𝐹𝑖) · 𝐵))
48 eleq1 2902 . . . . . . . 8 (𝑗 = 𝐾 → (𝑗𝑆𝐾𝑆))
4948anbi2d 630 . . . . . . 7 (𝑗 = 𝐾 → ((𝜑𝑗𝑆) ↔ (𝜑𝐾𝑆)))
50 csbeq1 3888 . . . . . . . 8 (𝑗 = 𝐾𝑗 / 𝑖𝐵 = 𝐾 / 𝑖𝐵)
5150eleq1d 2899 . . . . . . 7 (𝑗 = 𝐾 → (𝑗 / 𝑖𝐵 ∈ ℂ ↔ 𝐾 / 𝑖𝐵 ∈ ℂ))
5249, 51imbi12d 347 . . . . . 6 (𝑗 = 𝐾 → (((𝜑𝑗𝑆) → 𝑗 / 𝑖𝐵 ∈ ℂ) ↔ ((𝜑𝐾𝑆) → 𝐾 / 𝑖𝐵 ∈ ℂ)))
53 nfv 1915 . . . . . . . 8 𝑖(𝜑𝑗𝑆)
54 nfcsb1v 3909 . . . . . . . . 9 𝑖𝑗 / 𝑖𝐵
5554nfel1 2996 . . . . . . . 8 𝑖𝑗 / 𝑖𝐵 ∈ ℂ
5653, 55nfim 1897 . . . . . . 7 𝑖((𝜑𝑗𝑆) → 𝑗 / 𝑖𝐵 ∈ ℂ)
57 eleq1 2902 . . . . . . . . 9 (𝑖 = 𝑗 → (𝑖𝑆𝑗𝑆))
5857anbi2d 630 . . . . . . . 8 (𝑖 = 𝑗 → ((𝜑𝑖𝑆) ↔ (𝜑𝑗𝑆)))
59 csbeq1a 3899 . . . . . . . . 9 (𝑖 = 𝑗𝐵 = 𝑗 / 𝑖𝐵)
6059eleq1d 2899 . . . . . . . 8 (𝑖 = 𝑗 → (𝐵 ∈ ℂ ↔ 𝑗 / 𝑖𝐵 ∈ ℂ))
6158, 60imbi12d 347 . . . . . . 7 (𝑖 = 𝑗 → (((𝜑𝑖𝑆) → 𝐵 ∈ ℂ) ↔ ((𝜑𝑗𝑆) → 𝑗 / 𝑖𝐵 ∈ ℂ)))
6256, 61, 21chvarfv 2242 . . . . . 6 ((𝜑𝑗𝑆) → 𝑗 / 𝑖𝐵 ∈ ℂ)
6352, 62vtoclg 3569 . . . . 5 (𝐾𝑆 → ((𝜑𝐾𝑆) → 𝐾 / 𝑖𝐵 ∈ ℂ))
6463anabsi7 669 . . . 4 ((𝜑𝐾𝑆) → 𝐾 / 𝑖𝐵 ∈ ℂ)
654, 64mpdan 685 . . 3 (𝜑𝐾 / 𝑖𝐵 ∈ ℂ)
66 sumsns 15107 . . 3 ((𝐾𝑆𝐾 / 𝑖𝐵 ∈ ℂ) → Σ𝑖 ∈ {𝐾}𝐵 = 𝐾 / 𝑖𝐵)
674, 65, 66syl2anc 586 . 2 (𝜑 → Σ𝑖 ∈ {𝐾}𝐵 = 𝐾 / 𝑖𝐵)
6825, 47, 673eqtr3d 2866 1 (𝜑 → Σ𝑖𝑆 ((𝐹𝑖) · 𝐵) = 𝐾 / 𝑖𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  csb 3885  cdif 3935  ifcif 4469  {csn 4569  cmpt 5148  cfv 6357  (class class class)co 7158  Fincfn 8511  cc 10537  0cc0 10539  1c1 10540   · cmul 10544  Σcsu 15044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-sum 15045
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator