MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fldiv Structured version   Visualization version   GIF version

Theorem fldiv 12699
Description: Cancellation of the embedded floor of a real divided by an integer. (Contributed by NM, 16-Aug-2008.)
Assertion
Ref Expression
fldiv ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (⌊‘((⌊‘𝐴) / 𝑁)) = (⌊‘(𝐴 / 𝑁)))

Proof of Theorem fldiv
StepHypRef Expression
1 eqid 2651 . . . . . . . . 9 (⌊‘𝐴) = (⌊‘𝐴)
2 eqid 2651 . . . . . . . . 9 (𝐴 − (⌊‘𝐴)) = (𝐴 − (⌊‘𝐴))
31, 2intfrac2 12697 . . . . . . . 8 (𝐴 ∈ ℝ → (0 ≤ (𝐴 − (⌊‘𝐴)) ∧ (𝐴 − (⌊‘𝐴)) < 1 ∧ 𝐴 = ((⌊‘𝐴) + (𝐴 − (⌊‘𝐴)))))
43simp3d 1095 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 = ((⌊‘𝐴) + (𝐴 − (⌊‘𝐴))))
54adantr 480 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → 𝐴 = ((⌊‘𝐴) + (𝐴 − (⌊‘𝐴))))
65oveq1d 6705 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (𝐴 / 𝑁) = (((⌊‘𝐴) + (𝐴 − (⌊‘𝐴))) / 𝑁))
7 reflcl 12637 . . . . . . . 8 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ)
87recnd 10106 . . . . . . 7 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℂ)
98adantr 480 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (⌊‘𝐴) ∈ ℂ)
10 resubcl 10383 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (⌊‘𝐴) ∈ ℝ) → (𝐴 − (⌊‘𝐴)) ∈ ℝ)
117, 10mpdan 703 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 − (⌊‘𝐴)) ∈ ℝ)
1211recnd 10106 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 − (⌊‘𝐴)) ∈ ℂ)
1312adantr 480 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (𝐴 − (⌊‘𝐴)) ∈ ℂ)
14 nncn 11066 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
15 nnne0 11091 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
1614, 15jca 553 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0))
1716adantl 481 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0))
18 divdir 10748 . . . . . 6 (((⌊‘𝐴) ∈ ℂ ∧ (𝐴 − (⌊‘𝐴)) ∈ ℂ ∧ (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0)) → (((⌊‘𝐴) + (𝐴 − (⌊‘𝐴))) / 𝑁) = (((⌊‘𝐴) / 𝑁) + ((𝐴 − (⌊‘𝐴)) / 𝑁)))
199, 13, 17, 18syl3anc 1366 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (((⌊‘𝐴) + (𝐴 − (⌊‘𝐴))) / 𝑁) = (((⌊‘𝐴) / 𝑁) + ((𝐴 − (⌊‘𝐴)) / 𝑁)))
206, 19eqtrd 2685 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (𝐴 / 𝑁) = (((⌊‘𝐴) / 𝑁) + ((𝐴 − (⌊‘𝐴)) / 𝑁)))
21 flcl 12636 . . . . . 6 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℤ)
22 eqid 2651 . . . . . . . 8 (⌊‘((⌊‘𝐴) / 𝑁)) = (⌊‘((⌊‘𝐴) / 𝑁))
23 eqid 2651 . . . . . . . 8 (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) = (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁)))
2422, 23intfracq 12698 . . . . . . 7 (((⌊‘𝐴) ∈ ℤ ∧ 𝑁 ∈ ℕ) → (0 ≤ (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ∧ (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ≤ ((𝑁 − 1) / 𝑁) ∧ ((⌊‘𝐴) / 𝑁) = ((⌊‘((⌊‘𝐴) / 𝑁)) + (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))))))
2524simp3d 1095 . . . . . 6 (((⌊‘𝐴) ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((⌊‘𝐴) / 𝑁) = ((⌊‘((⌊‘𝐴) / 𝑁)) + (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁)))))
2621, 25sylan 487 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((⌊‘𝐴) / 𝑁) = ((⌊‘((⌊‘𝐴) / 𝑁)) + (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁)))))
2726oveq1d 6705 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (((⌊‘𝐴) / 𝑁) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) = (((⌊‘((⌊‘𝐴) / 𝑁)) + (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁)))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)))
287adantr 480 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (⌊‘𝐴) ∈ ℝ)
29 nnre 11065 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
3029adantl 481 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
3115adantl 481 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → 𝑁 ≠ 0)
3228, 30, 31redivcld 10891 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((⌊‘𝐴) / 𝑁) ∈ ℝ)
33 reflcl 12637 . . . . . . 7 (((⌊‘𝐴) / 𝑁) ∈ ℝ → (⌊‘((⌊‘𝐴) / 𝑁)) ∈ ℝ)
3432, 33syl 17 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (⌊‘((⌊‘𝐴) / 𝑁)) ∈ ℝ)
3534recnd 10106 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (⌊‘((⌊‘𝐴) / 𝑁)) ∈ ℂ)
3632, 34resubcld 10496 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ∈ ℝ)
3736recnd 10106 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ∈ ℂ)
3811adantr 480 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (𝐴 − (⌊‘𝐴)) ∈ ℝ)
3938, 30, 31redivcld 10891 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((𝐴 − (⌊‘𝐴)) / 𝑁) ∈ ℝ)
4039recnd 10106 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((𝐴 − (⌊‘𝐴)) / 𝑁) ∈ ℂ)
4135, 37, 40addassd 10100 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (((⌊‘((⌊‘𝐴) / 𝑁)) + (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁)))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) = ((⌊‘((⌊‘𝐴) / 𝑁)) + ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁))))
4220, 27, 413eqtrd 2689 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (𝐴 / 𝑁) = ((⌊‘((⌊‘𝐴) / 𝑁)) + ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁))))
4342fveq2d 6233 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (⌊‘(𝐴 / 𝑁)) = (⌊‘((⌊‘((⌊‘𝐴) / 𝑁)) + ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)))))
4424simp1d 1093 . . . . 5 (((⌊‘𝐴) ∈ ℤ ∧ 𝑁 ∈ ℕ) → 0 ≤ (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))))
4521, 44sylan 487 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → 0 ≤ (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))))
46 fracge0 12645 . . . . . 6 (𝐴 ∈ ℝ → 0 ≤ (𝐴 − (⌊‘𝐴)))
4711, 46jca 553 . . . . 5 (𝐴 ∈ ℝ → ((𝐴 − (⌊‘𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 − (⌊‘𝐴))))
48 nngt0 11087 . . . . . 6 (𝑁 ∈ ℕ → 0 < 𝑁)
4929, 48jca 553 . . . . 5 (𝑁 ∈ ℕ → (𝑁 ∈ ℝ ∧ 0 < 𝑁))
50 divge0 10930 . . . . 5 ((((𝐴 − (⌊‘𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 − (⌊‘𝐴))) ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → 0 ≤ ((𝐴 − (⌊‘𝐴)) / 𝑁))
5147, 49, 50syl2an 493 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → 0 ≤ ((𝐴 − (⌊‘𝐴)) / 𝑁))
5236, 39, 45, 51addge0d 10641 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → 0 ≤ ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)))
53 peano2rem 10386 . . . . . . . . . 10 (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ)
5429, 53syl 17 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℝ)
5554, 29, 15redivcld 10891 . . . . . . . 8 (𝑁 ∈ ℕ → ((𝑁 − 1) / 𝑁) ∈ ℝ)
56 nnrecre 11095 . . . . . . . 8 (𝑁 ∈ ℕ → (1 / 𝑁) ∈ ℝ)
5755, 56jca 553 . . . . . . 7 (𝑁 ∈ ℕ → (((𝑁 − 1) / 𝑁) ∈ ℝ ∧ (1 / 𝑁) ∈ ℝ))
5857adantl 481 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (((𝑁 − 1) / 𝑁) ∈ ℝ ∧ (1 / 𝑁) ∈ ℝ))
5936, 39, 58jca31 556 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ∈ ℝ ∧ ((𝐴 − (⌊‘𝐴)) / 𝑁) ∈ ℝ) ∧ (((𝑁 − 1) / 𝑁) ∈ ℝ ∧ (1 / 𝑁) ∈ ℝ)))
6024simp2d 1094 . . . . . . 7 (((⌊‘𝐴) ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ≤ ((𝑁 − 1) / 𝑁))
6121, 60sylan 487 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ≤ ((𝑁 − 1) / 𝑁))
62 fraclt1 12643 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 − (⌊‘𝐴)) < 1)
6362adantr 480 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (𝐴 − (⌊‘𝐴)) < 1)
64 1re 10077 . . . . . . . . 9 1 ∈ ℝ
65 ltdiv1 10925 . . . . . . . . 9 (((𝐴 − (⌊‘𝐴)) ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝐴 − (⌊‘𝐴)) < 1 ↔ ((𝐴 − (⌊‘𝐴)) / 𝑁) < (1 / 𝑁)))
6664, 65mp3an2 1452 . . . . . . . 8 (((𝐴 − (⌊‘𝐴)) ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝐴 − (⌊‘𝐴)) < 1 ↔ ((𝐴 − (⌊‘𝐴)) / 𝑁) < (1 / 𝑁)))
6711, 49, 66syl2an 493 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((𝐴 − (⌊‘𝐴)) < 1 ↔ ((𝐴 − (⌊‘𝐴)) / 𝑁) < (1 / 𝑁)))
6863, 67mpbid 222 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((𝐴 − (⌊‘𝐴)) / 𝑁) < (1 / 𝑁))
6961, 68jca 553 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ≤ ((𝑁 − 1) / 𝑁) ∧ ((𝐴 − (⌊‘𝐴)) / 𝑁) < (1 / 𝑁)))
70 leltadd 10550 . . . . 5 ((((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ∈ ℝ ∧ ((𝐴 − (⌊‘𝐴)) / 𝑁) ∈ ℝ) ∧ (((𝑁 − 1) / 𝑁) ∈ ℝ ∧ (1 / 𝑁) ∈ ℝ)) → (((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) ≤ ((𝑁 − 1) / 𝑁) ∧ ((𝐴 − (⌊‘𝐴)) / 𝑁) < (1 / 𝑁)) → ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) < (((𝑁 − 1) / 𝑁) + (1 / 𝑁))))
7159, 69, 70sylc 65 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) < (((𝑁 − 1) / 𝑁) + (1 / 𝑁)))
72 ax-1cn 10032 . . . . . . . 8 1 ∈ ℂ
73 npcan 10328 . . . . . . . 8 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
7414, 72, 73sylancl 695 . . . . . . 7 (𝑁 ∈ ℕ → ((𝑁 − 1) + 1) = 𝑁)
7574oveq1d 6705 . . . . . 6 (𝑁 ∈ ℕ → (((𝑁 − 1) + 1) / 𝑁) = (𝑁 / 𝑁))
7654recnd 10106 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℂ)
77 divdir 10748 . . . . . . . 8 (((𝑁 − 1) ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0)) → (((𝑁 − 1) + 1) / 𝑁) = (((𝑁 − 1) / 𝑁) + (1 / 𝑁)))
7872, 77mp3an2 1452 . . . . . . 7 (((𝑁 − 1) ∈ ℂ ∧ (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0)) → (((𝑁 − 1) + 1) / 𝑁) = (((𝑁 − 1) / 𝑁) + (1 / 𝑁)))
7976, 14, 15, 78syl12anc 1364 . . . . . 6 (𝑁 ∈ ℕ → (((𝑁 − 1) + 1) / 𝑁) = (((𝑁 − 1) / 𝑁) + (1 / 𝑁)))
8014, 15dividd 10837 . . . . . 6 (𝑁 ∈ ℕ → (𝑁 / 𝑁) = 1)
8175, 79, 803eqtr3d 2693 . . . . 5 (𝑁 ∈ ℕ → (((𝑁 − 1) / 𝑁) + (1 / 𝑁)) = 1)
8281adantl 481 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (((𝑁 − 1) / 𝑁) + (1 / 𝑁)) = 1)
8371, 82breqtrd 4711 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) < 1)
8432flcld 12639 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (⌊‘((⌊‘𝐴) / 𝑁)) ∈ ℤ)
8536, 39readdcld 10107 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) ∈ ℝ)
86 flbi2 12658 . . . 4 (((⌊‘((⌊‘𝐴) / 𝑁)) ∈ ℤ ∧ ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) ∈ ℝ) → ((⌊‘((⌊‘((⌊‘𝐴) / 𝑁)) + ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)))) = (⌊‘((⌊‘𝐴) / 𝑁)) ↔ (0 ≤ ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) ∧ ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) < 1)))
8784, 85, 86syl2anc 694 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((⌊‘((⌊‘((⌊‘𝐴) / 𝑁)) + ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)))) = (⌊‘((⌊‘𝐴) / 𝑁)) ↔ (0 ≤ ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) ∧ ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)) < 1)))
8852, 83, 87mpbir2and 977 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (⌊‘((⌊‘((⌊‘𝐴) / 𝑁)) + ((((⌊‘𝐴) / 𝑁) − (⌊‘((⌊‘𝐴) / 𝑁))) + ((𝐴 − (⌊‘𝐴)) / 𝑁)))) = (⌊‘((⌊‘𝐴) / 𝑁)))
8943, 88eqtr2d 2686 1 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (⌊‘((⌊‘𝐴) / 𝑁)) = (⌊‘(𝐴 / 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wne 2823   class class class wbr 4685  cfv 5926  (class class class)co 6690  cc 9972  cr 9973  0cc0 9974  1c1 9975   + caddc 9977   < clt 10112  cle 10113  cmin 10304   / cdiv 10722  cn 11058  cz 11415  cfl 12631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-fl 12633
This theorem is referenced by:  fldiv2  12700  modmulnn  12728  digit2  13037  bitsp1  15200
  Copyright terms: Public domain W3C validator