MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flftg Structured version   Visualization version   GIF version

Theorem flftg 22606
Description: Limit points of a function can be defined using topological bases. (Contributed by Mario Carneiro, 19-Sep-2015.)
Hypothesis
Ref Expression
flftg.l 𝐽 = (topGen‘𝐵)
Assertion
Ref Expression
flftg ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝐴𝑋 ∧ ∀𝑜𝐵 (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜))))
Distinct variable groups:   𝑜,𝑠,𝐴   𝐵,𝑜   𝑜,𝐹,𝑠   𝐽,𝑠   𝑜,𝐿,𝑠   𝑋,𝑠   𝑌,𝑠
Allowed substitution hints:   𝐵(𝑠)   𝐽(𝑜)   𝑋(𝑜)   𝑌(𝑜)

Proof of Theorem flftg
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 isflf 22603 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝐴𝑋 ∧ ∀𝑢𝐽 (𝐴𝑢 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢))))
2 flftg.l . . . . 5 𝐽 = (topGen‘𝐵)
32raleqi 3415 . . . 4 (∀𝑢𝐽 (𝐴𝑢 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢) ↔ ∀𝑢 ∈ (topGen‘𝐵)(𝐴𝑢 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢))
4 simpl1 1187 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → 𝐽 ∈ (TopOn‘𝑋))
5 topontop 21523 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
64, 5syl 17 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → 𝐽 ∈ Top)
72, 6eqeltrrid 2920 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → (topGen‘𝐵) ∈ Top)
8 tgclb 21580 . . . . . . 7 (𝐵 ∈ TopBases ↔ (topGen‘𝐵) ∈ Top)
97, 8sylibr 236 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → 𝐵 ∈ TopBases)
10 bastg 21576 . . . . . 6 (𝐵 ∈ TopBases → 𝐵 ⊆ (topGen‘𝐵))
11 eleq2w 2898 . . . . . . . . 9 (𝑢 = 𝑜 → (𝐴𝑢𝐴𝑜))
12 sseq2 3995 . . . . . . . . . 10 (𝑢 = 𝑜 → ((𝐹𝑠) ⊆ 𝑢 ↔ (𝐹𝑠) ⊆ 𝑜))
1312rexbidv 3299 . . . . . . . . 9 (𝑢 = 𝑜 → (∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢 ↔ ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜))
1411, 13imbi12d 347 . . . . . . . 8 (𝑢 = 𝑜 → ((𝐴𝑢 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢) ↔ (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜)))
1514cbvralvw 3451 . . . . . . 7 (∀𝑢 ∈ (topGen‘𝐵)(𝐴𝑢 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢) ↔ ∀𝑜 ∈ (topGen‘𝐵)(𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜))
16 ssralv 4035 . . . . . . 7 (𝐵 ⊆ (topGen‘𝐵) → (∀𝑜 ∈ (topGen‘𝐵)(𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜) → ∀𝑜𝐵 (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜)))
1715, 16syl5bi 244 . . . . . 6 (𝐵 ⊆ (topGen‘𝐵) → (∀𝑢 ∈ (topGen‘𝐵)(𝐴𝑢 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢) → ∀𝑜𝐵 (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜)))
189, 10, 173syl 18 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → (∀𝑢 ∈ (topGen‘𝐵)(𝐴𝑢 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢) → ∀𝑜𝐵 (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜)))
19 tg2 21575 . . . . . . . 8 ((𝑢 ∈ (topGen‘𝐵) ∧ 𝐴𝑢) → ∃𝑜𝐵 (𝐴𝑜𝑜𝑢))
20 r19.29 3256 . . . . . . . . . 10 ((∀𝑜𝐵 (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜) ∧ ∃𝑜𝐵 (𝐴𝑜𝑜𝑢)) → ∃𝑜𝐵 ((𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜) ∧ (𝐴𝑜𝑜𝑢)))
21 simpl 485 . . . . . . . . . . . . 13 ((𝐴𝑜𝑜𝑢) → 𝐴𝑜)
22 simpr 487 . . . . . . . . . . . . . . 15 ((𝐴𝑜𝑜𝑢) → 𝑜𝑢)
23 sstr2 3976 . . . . . . . . . . . . . . 15 ((𝐹𝑠) ⊆ 𝑜 → (𝑜𝑢 → (𝐹𝑠) ⊆ 𝑢))
2422, 23syl5com 31 . . . . . . . . . . . . . 14 ((𝐴𝑜𝑜𝑢) → ((𝐹𝑠) ⊆ 𝑜 → (𝐹𝑠) ⊆ 𝑢))
2524reximdv 3275 . . . . . . . . . . . . 13 ((𝐴𝑜𝑜𝑢) → (∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢))
2621, 25embantd 59 . . . . . . . . . . . 12 ((𝐴𝑜𝑜𝑢) → ((𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜) → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢))
2726impcom 410 . . . . . . . . . . 11 (((𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜) ∧ (𝐴𝑜𝑜𝑢)) → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢)
2827rexlimivw 3284 . . . . . . . . . 10 (∃𝑜𝐵 ((𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜) ∧ (𝐴𝑜𝑜𝑢)) → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢)
2920, 28syl 17 . . . . . . . . 9 ((∀𝑜𝐵 (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜) ∧ ∃𝑜𝐵 (𝐴𝑜𝑜𝑢)) → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢)
3029ex 415 . . . . . . . 8 (∀𝑜𝐵 (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜) → (∃𝑜𝐵 (𝐴𝑜𝑜𝑢) → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢))
3119, 30syl5 34 . . . . . . 7 (∀𝑜𝐵 (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜) → ((𝑢 ∈ (topGen‘𝐵) ∧ 𝐴𝑢) → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢))
3231expdimp 455 . . . . . 6 ((∀𝑜𝐵 (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜) ∧ 𝑢 ∈ (topGen‘𝐵)) → (𝐴𝑢 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢))
3332ralrimiva 3184 . . . . 5 (∀𝑜𝐵 (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜) → ∀𝑢 ∈ (topGen‘𝐵)(𝐴𝑢 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢))
3418, 33impbid1 227 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → (∀𝑢 ∈ (topGen‘𝐵)(𝐴𝑢 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢) ↔ ∀𝑜𝐵 (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜)))
353, 34syl5bb 285 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → (∀𝑢𝐽 (𝐴𝑢 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢) ↔ ∀𝑜𝐵 (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜)))
3635pm5.32da 581 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐴𝑋 ∧ ∀𝑢𝐽 (𝐴𝑢 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑢)) ↔ (𝐴𝑋 ∧ ∀𝑜𝐵 (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜))))
371, 36bitrd 281 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝐴𝑋 ∧ ∀𝑜𝐵 (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3140  wrex 3141  wss 3938  cima 5560  wf 6353  cfv 6357  (class class class)co 7158  topGenctg 16713  Topctop 21503  TopOnctopon 21520  TopBasesctb 21555  Filcfil 22455   fLimf cflf 22545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-map 8410  df-topgen 16719  df-fbas 20544  df-fg 20545  df-top 21504  df-topon 21521  df-bases 21556  df-ntr 21630  df-nei 21708  df-fil 22456  df-fm 22548  df-flim 22549  df-flf 22550
This theorem is referenced by:  txflf  22616
  Copyright terms: Public domain W3C validator