MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flimclslem Structured version   Visualization version   GIF version

Theorem flimclslem 21698
Description: Lemma for flimcls 21699. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Hypothesis
Ref Expression
flimcls.2 𝐹 = (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})))
Assertion
Ref Expression
flimclslem ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (𝐹 ∈ (Fil‘𝑋) ∧ 𝑆𝐹𝐴 ∈ (𝐽 fLim 𝐹)))

Proof of Theorem flimclslem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 flimcls.2 . . 3 𝐹 = (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})))
2 topontop 20641 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
323ad2ant1 1080 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝐽 ∈ Top)
4 eqid 2621 . . . . . . . . 9 𝐽 = 𝐽
54neisspw 20821 . . . . . . . 8 (𝐽 ∈ Top → ((nei‘𝐽)‘{𝐴}) ⊆ 𝒫 𝐽)
63, 5syl 17 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ((nei‘𝐽)‘{𝐴}) ⊆ 𝒫 𝐽)
7 toponuni 20642 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
873ad2ant1 1080 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝑋 = 𝐽)
98pweqd 4135 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝒫 𝑋 = 𝒫 𝐽)
106, 9sseqtr4d 3621 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ((nei‘𝐽)‘{𝐴}) ⊆ 𝒫 𝑋)
11 toponmax 20643 . . . . . . . . . 10 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
12 elpw2g 4787 . . . . . . . . . 10 (𝑋𝐽 → (𝑆 ∈ 𝒫 𝑋𝑆𝑋))
1311, 12syl 17 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝑋) → (𝑆 ∈ 𝒫 𝑋𝑆𝑋))
1413biimpar 502 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) → 𝑆 ∈ 𝒫 𝑋)
15143adant3 1079 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝑆 ∈ 𝒫 𝑋)
1615snssd 4309 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → {𝑆} ⊆ 𝒫 𝑋)
1710, 16unssd 3767 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (((nei‘𝐽)‘{𝐴}) ∪ {𝑆}) ⊆ 𝒫 𝑋)
18 ssun2 3755 . . . . . 6 {𝑆} ⊆ (((nei‘𝐽)‘{𝐴}) ∪ {𝑆})
19113ad2ant1 1080 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝑋𝐽)
20 simp2 1060 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝑆𝑋)
2119, 20ssexd 4765 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝑆 ∈ V)
22 snnzg 4278 . . . . . . 7 (𝑆 ∈ V → {𝑆} ≠ ∅)
2321, 22syl 17 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → {𝑆} ≠ ∅)
24 ssn0 3948 . . . . . 6 (({𝑆} ⊆ (((nei‘𝐽)‘{𝐴}) ∪ {𝑆}) ∧ {𝑆} ≠ ∅) → (((nei‘𝐽)‘{𝐴}) ∪ {𝑆}) ≠ ∅)
2518, 23, 24sylancr 694 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (((nei‘𝐽)‘{𝐴}) ∪ {𝑆}) ≠ ∅)
2620, 8sseqtrd 3620 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝑆 𝐽)
27 simp3 1061 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝐴 ∈ ((cls‘𝐽)‘𝑆))
284neindisj 20831 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝑆 𝐽) ∧ (𝐴 ∈ ((cls‘𝐽)‘𝑆) ∧ 𝑥 ∈ ((nei‘𝐽)‘{𝐴}))) → (𝑥𝑆) ≠ ∅)
2928expr 642 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝑆 𝐽) ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (𝑥 ∈ ((nei‘𝐽)‘{𝐴}) → (𝑥𝑆) ≠ ∅))
303, 26, 27, 29syl21anc 1322 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (𝑥 ∈ ((nei‘𝐽)‘{𝐴}) → (𝑥𝑆) ≠ ∅))
3130imp 445 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 𝑥 ∈ ((nei‘𝐽)‘{𝐴})) → (𝑥𝑆) ≠ ∅)
32 elsni 4165 . . . . . . . . . . 11 (𝑦 ∈ {𝑆} → 𝑦 = 𝑆)
3332ineq2d 3792 . . . . . . . . . 10 (𝑦 ∈ {𝑆} → (𝑥𝑦) = (𝑥𝑆))
3433neeq1d 2849 . . . . . . . . 9 (𝑦 ∈ {𝑆} → ((𝑥𝑦) ≠ ∅ ↔ (𝑥𝑆) ≠ ∅))
3531, 34syl5ibrcom 237 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 𝑥 ∈ ((nei‘𝐽)‘{𝐴})) → (𝑦 ∈ {𝑆} → (𝑥𝑦) ≠ ∅))
3635ralrimiv 2959 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) ∧ 𝑥 ∈ ((nei‘𝐽)‘{𝐴})) → ∀𝑦 ∈ {𝑆} (𝑥𝑦) ≠ ∅)
3736ralrimiva 2960 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ∀𝑥 ∈ ((nei‘𝐽)‘{𝐴})∀𝑦 ∈ {𝑆} (𝑥𝑦) ≠ ∅)
38 simp1 1059 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝐽 ∈ (TopOn‘𝑋))
394clsss3 20773 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → ((cls‘𝐽)‘𝑆) ⊆ 𝐽)
403, 26, 39syl2anc 692 . . . . . . . . . . . 12 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ((cls‘𝐽)‘𝑆) ⊆ 𝐽)
4140, 27sseldd 3584 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝐴 𝐽)
4241, 8eleqtrrd 2701 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝐴𝑋)
4342snssd 4309 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → {𝐴} ⊆ 𝑋)
44 snnzg 4278 . . . . . . . . . 10 (𝐴 ∈ ((cls‘𝐽)‘𝑆) → {𝐴} ≠ ∅)
45443ad2ant3 1082 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → {𝐴} ≠ ∅)
46 neifil 21594 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ {𝐴} ⊆ 𝑋 ∧ {𝐴} ≠ ∅) → ((nei‘𝐽)‘{𝐴}) ∈ (Fil‘𝑋))
4738, 43, 45, 46syl3anc 1323 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ((nei‘𝐽)‘{𝐴}) ∈ (Fil‘𝑋))
48 filfbas 21562 . . . . . . . 8 (((nei‘𝐽)‘{𝐴}) ∈ (Fil‘𝑋) → ((nei‘𝐽)‘{𝐴}) ∈ (fBas‘𝑋))
4947, 48syl 17 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ((nei‘𝐽)‘{𝐴}) ∈ (fBas‘𝑋))
50 ne0i 3897 . . . . . . . . . . 11 (𝐴 ∈ ((cls‘𝐽)‘𝑆) → ((cls‘𝐽)‘𝑆) ≠ ∅)
51503ad2ant3 1082 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ((cls‘𝐽)‘𝑆) ≠ ∅)
52 cls0 20794 . . . . . . . . . . 11 (𝐽 ∈ Top → ((cls‘𝐽)‘∅) = ∅)
533, 52syl 17 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ((cls‘𝐽)‘∅) = ∅)
5451, 53neeqtrrd 2864 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ((cls‘𝐽)‘𝑆) ≠ ((cls‘𝐽)‘∅))
55 fveq2 6148 . . . . . . . . . 10 (𝑆 = ∅ → ((cls‘𝐽)‘𝑆) = ((cls‘𝐽)‘∅))
5655necon3i 2822 . . . . . . . . 9 (((cls‘𝐽)‘𝑆) ≠ ((cls‘𝐽)‘∅) → 𝑆 ≠ ∅)
5754, 56syl 17 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝑆 ≠ ∅)
58 snfbas 21580 . . . . . . . 8 ((𝑆𝑋𝑆 ≠ ∅ ∧ 𝑋𝐽) → {𝑆} ∈ (fBas‘𝑋))
5920, 57, 19, 58syl3anc 1323 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → {𝑆} ∈ (fBas‘𝑋))
60 fbunfip 21583 . . . . . . 7 ((((nei‘𝐽)‘{𝐴}) ∈ (fBas‘𝑋) ∧ {𝑆} ∈ (fBas‘𝑋)) → (¬ ∅ ∈ (fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})) ↔ ∀𝑥 ∈ ((nei‘𝐽)‘{𝐴})∀𝑦 ∈ {𝑆} (𝑥𝑦) ≠ ∅))
6149, 59, 60syl2anc 692 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (¬ ∅ ∈ (fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})) ↔ ∀𝑥 ∈ ((nei‘𝐽)‘{𝐴})∀𝑦 ∈ {𝑆} (𝑥𝑦) ≠ ∅))
6237, 61mpbird 247 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ¬ ∅ ∈ (fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})))
63 fsubbas 21581 . . . . . 6 (𝑋𝐽 → ((fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})) ∈ (fBas‘𝑋) ↔ ((((nei‘𝐽)‘{𝐴}) ∪ {𝑆}) ⊆ 𝒫 𝑋 ∧ (((nei‘𝐽)‘{𝐴}) ∪ {𝑆}) ≠ ∅ ∧ ¬ ∅ ∈ (fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})))))
6419, 63syl 17 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ((fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})) ∈ (fBas‘𝑋) ↔ ((((nei‘𝐽)‘{𝐴}) ∪ {𝑆}) ⊆ 𝒫 𝑋 ∧ (((nei‘𝐽)‘{𝐴}) ∪ {𝑆}) ≠ ∅ ∧ ¬ ∅ ∈ (fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})))))
6517, 25, 62, 64mpbir3and 1243 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})) ∈ (fBas‘𝑋))
66 fgcl 21592 . . . 4 ((fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})) ∈ (fBas‘𝑋) → (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))) ∈ (Fil‘𝑋))
6765, 66syl 17 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))) ∈ (Fil‘𝑋))
681, 67syl5eqel 2702 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝐹 ∈ (Fil‘𝑋))
69 fvex 6158 . . . . . 6 ((nei‘𝐽)‘{𝐴}) ∈ V
70 snex 4869 . . . . . 6 {𝑆} ∈ V
7169, 70unex 6909 . . . . 5 (((nei‘𝐽)‘{𝐴}) ∪ {𝑆}) ∈ V
72 ssfii 8269 . . . . 5 ((((nei‘𝐽)‘{𝐴}) ∪ {𝑆}) ∈ V → (((nei‘𝐽)‘{𝐴}) ∪ {𝑆}) ⊆ (fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})))
7371, 72ax-mp 5 . . . 4 (((nei‘𝐽)‘{𝐴}) ∪ {𝑆}) ⊆ (fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))
74 ssfg 21586 . . . . . 6 ((fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})) ∈ (fBas‘𝑋) → (fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})) ⊆ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))))
7565, 74syl 17 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})) ⊆ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))))
7675, 1syl6sseqr 3631 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})) ⊆ 𝐹)
7773, 76syl5ss 3594 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (((nei‘𝐽)‘{𝐴}) ∪ {𝑆}) ⊆ 𝐹)
78 snssg 4296 . . . . 5 (𝑆 ∈ V → (𝑆 ∈ (((nei‘𝐽)‘{𝐴}) ∪ {𝑆}) ↔ {𝑆} ⊆ (((nei‘𝐽)‘{𝐴}) ∪ {𝑆})))
7921, 78syl 17 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (𝑆 ∈ (((nei‘𝐽)‘{𝐴}) ∪ {𝑆}) ↔ {𝑆} ⊆ (((nei‘𝐽)‘{𝐴}) ∪ {𝑆})))
8018, 79mpbiri 248 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝑆 ∈ (((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))
8177, 80sseldd 3584 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝑆𝐹)
8277unssad 3768 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)
83 elflim 21685 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)))
8438, 68, 83syl2anc 692 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)))
8542, 82, 84mpbir2and 956 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → 𝐴 ∈ (𝐽 fLim 𝐹))
8668, 81, 853jca 1240 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (𝐹 ∈ (Fil‘𝑋) ∧ 𝑆𝐹𝐴 ∈ (𝐽 fLim 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  wral 2907  Vcvv 3186  cun 3553  cin 3554  wss 3555  c0 3891  𝒫 cpw 4130  {csn 4148   cuni 4402  cfv 5847  (class class class)co 6604  ficfi 8260  fBascfbas 19653  filGencfg 19654  Topctop 20617  TopOnctopon 20618  clsccl 20732  neicnei 20811  Filcfil 21559   fLim cflim 21648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-en 7900  df-fin 7903  df-fi 8261  df-fbas 19662  df-fg 19663  df-top 20621  df-topon 20623  df-cld 20733  df-ntr 20734  df-cls 20735  df-nei 20812  df-fil 21560  df-flim 21653
This theorem is referenced by:  flimcls  21699
  Copyright terms: Public domain W3C validator