Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  flnn0div2ge Structured version   Visualization version   GIF version

Theorem flnn0div2ge 42829
Description: The floor of a positive integer divided by 2 is greater than or equal to the integer decreased by 1 and then divided by 2. (Contributed by AV, 1-Jun-2020.)
Assertion
Ref Expression
flnn0div2ge (𝑁 ∈ ℕ0 → ((𝑁 − 1) / 2) ≤ (⌊‘(𝑁 / 2)))

Proof of Theorem flnn0div2ge
StepHypRef Expression
1 nn0eo 42824 . 2 (𝑁 ∈ ℕ0 → ((𝑁 / 2) ∈ ℕ0 ∨ ((𝑁 + 1) / 2) ∈ ℕ0))
2 nn0re 11485 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
3 peano2rem 10532 . . . . . . . 8 (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ)
42, 3syl 17 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 − 1) ∈ ℝ)
54adantl 473 . . . . . 6 (((𝑁 / 2) ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁 − 1) ∈ ℝ)
62adantl 473 . . . . . 6 (((𝑁 / 2) ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℝ)
7 2rp 12022 . . . . . . 7 2 ∈ ℝ+
87a1i 11 . . . . . 6 (((𝑁 / 2) ∈ ℕ0𝑁 ∈ ℕ0) → 2 ∈ ℝ+)
92lem1d 11141 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 − 1) ≤ 𝑁)
109adantl 473 . . . . . 6 (((𝑁 / 2) ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁 − 1) ≤ 𝑁)
115, 6, 8, 10lediv1dd 12115 . . . . 5 (((𝑁 / 2) ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑁 − 1) / 2) ≤ (𝑁 / 2))
12 nn0z 11584 . . . . . . 7 ((𝑁 / 2) ∈ ℕ0 → (𝑁 / 2) ∈ ℤ)
13 flid 12795 . . . . . . 7 ((𝑁 / 2) ∈ ℤ → (⌊‘(𝑁 / 2)) = (𝑁 / 2))
1412, 13syl 17 . . . . . 6 ((𝑁 / 2) ∈ ℕ0 → (⌊‘(𝑁 / 2)) = (𝑁 / 2))
1514adantr 472 . . . . 5 (((𝑁 / 2) ∈ ℕ0𝑁 ∈ ℕ0) → (⌊‘(𝑁 / 2)) = (𝑁 / 2))
1611, 15breqtrrd 4824 . . . 4 (((𝑁 / 2) ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑁 − 1) / 2) ≤ (⌊‘(𝑁 / 2)))
1716ex 449 . . 3 ((𝑁 / 2) ∈ ℕ0 → (𝑁 ∈ ℕ0 → ((𝑁 − 1) / 2) ≤ (⌊‘(𝑁 / 2))))
18 nn0o 15293 . . . . 5 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ0)
1918ex 449 . . . 4 (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℕ0 → ((𝑁 − 1) / 2) ∈ ℕ0))
20 nn0z 11584 . . . . . . . 8 (((𝑁 − 1) / 2) ∈ ℕ0 → ((𝑁 − 1) / 2) ∈ ℤ)
2120adantl 473 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ ((𝑁 − 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℤ)
22 flid 12795 . . . . . . 7 (((𝑁 − 1) / 2) ∈ ℤ → (⌊‘((𝑁 − 1) / 2)) = ((𝑁 − 1) / 2))
2321, 22syl 17 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ ((𝑁 − 1) / 2) ∈ ℕ0) → (⌊‘((𝑁 − 1) / 2)) = ((𝑁 − 1) / 2))
244rehalfcld 11463 . . . . . . . 8 (𝑁 ∈ ℕ0 → ((𝑁 − 1) / 2) ∈ ℝ)
2524adantr 472 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ ((𝑁 − 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℝ)
262rehalfcld 11463 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝑁 / 2) ∈ ℝ)
2726adantr 472 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ ((𝑁 − 1) / 2) ∈ ℕ0) → (𝑁 / 2) ∈ ℝ)
28 2re 11274 . . . . . . . . . . . 12 2 ∈ ℝ
29 2pos 11296 . . . . . . . . . . . 12 0 < 2
3028, 29pm3.2i 470 . . . . . . . . . . 11 (2 ∈ ℝ ∧ 0 < 2)
3130a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (2 ∈ ℝ ∧ 0 < 2))
32 lediv1 11072 . . . . . . . . . 10 (((𝑁 − 1) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((𝑁 − 1) ≤ 𝑁 ↔ ((𝑁 − 1) / 2) ≤ (𝑁 / 2)))
334, 2, 31, 32syl3anc 1473 . . . . . . . . 9 (𝑁 ∈ ℕ0 → ((𝑁 − 1) ≤ 𝑁 ↔ ((𝑁 − 1) / 2) ≤ (𝑁 / 2)))
349, 33mpbid 222 . . . . . . . 8 (𝑁 ∈ ℕ0 → ((𝑁 − 1) / 2) ≤ (𝑁 / 2))
3534adantr 472 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ ((𝑁 − 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ≤ (𝑁 / 2))
36 flwordi 12799 . . . . . . 7 ((((𝑁 − 1) / 2) ∈ ℝ ∧ (𝑁 / 2) ∈ ℝ ∧ ((𝑁 − 1) / 2) ≤ (𝑁 / 2)) → (⌊‘((𝑁 − 1) / 2)) ≤ (⌊‘(𝑁 / 2)))
3725, 27, 35, 36syl3anc 1473 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ ((𝑁 − 1) / 2) ∈ ℕ0) → (⌊‘((𝑁 − 1) / 2)) ≤ (⌊‘(𝑁 / 2)))
3823, 37eqbrtrrd 4820 . . . . 5 ((𝑁 ∈ ℕ0 ∧ ((𝑁 − 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ≤ (⌊‘(𝑁 / 2)))
3938ex 449 . . . 4 (𝑁 ∈ ℕ0 → (((𝑁 − 1) / 2) ∈ ℕ0 → ((𝑁 − 1) / 2) ≤ (⌊‘(𝑁 / 2))))
4019, 39syldc 48 . . 3 (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 ∈ ℕ0 → ((𝑁 − 1) / 2) ≤ (⌊‘(𝑁 / 2))))
4117, 40jaoi 393 . 2 (((𝑁 / 2) ∈ ℕ0 ∨ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 ∈ ℕ0 → ((𝑁 − 1) / 2) ≤ (⌊‘(𝑁 / 2))))
421, 41mpcom 38 1 (𝑁 ∈ ℕ0 → ((𝑁 − 1) / 2) ≤ (⌊‘(𝑁 / 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 382  wa 383   = wceq 1624  wcel 2131   class class class wbr 4796  cfv 6041  (class class class)co 6805  cr 10119  0cc0 10120  1c1 10121   + caddc 10123   < clt 10258  cle 10259  cmin 10450   / cdiv 10868  2c2 11254  0cn0 11476  cz 11561  +crp 12017  cfl 12777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197  ax-pre-sup 10198
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-om 7223  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-er 7903  df-en 8114  df-dom 8115  df-sdom 8116  df-sup 8505  df-inf 8506  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-div 10869  df-nn 11205  df-2 11263  df-3 11264  df-4 11265  df-n0 11477  df-z 11562  df-uz 11872  df-rp 12018  df-fl 12779
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator