MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flodddiv4 Structured version   Visualization version   GIF version

Theorem flodddiv4 15184
Description: The floor of an odd integer divided by 4. (Contributed by AV, 17-Jun-2021.)
Assertion
Ref Expression
flodddiv4 ((𝑀 ∈ ℤ ∧ 𝑁 = ((2 · 𝑀) + 1)) → (⌊‘(𝑁 / 4)) = if(2 ∥ 𝑀, (𝑀 / 2), ((𝑀 − 1) / 2)))

Proof of Theorem flodddiv4
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oveq1 6697 . . . 4 (𝑁 = ((2 · 𝑀) + 1) → (𝑁 / 4) = (((2 · 𝑀) + 1) / 4))
2 2cnd 11131 . . . . . . 7 (𝑀 ∈ ℤ → 2 ∈ ℂ)
3 zcn 11420 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
42, 3mulcld 10098 . . . . . 6 (𝑀 ∈ ℤ → (2 · 𝑀) ∈ ℂ)
5 1cnd 10094 . . . . . 6 (𝑀 ∈ ℤ → 1 ∈ ℂ)
6 4cn 11136 . . . . . . . 8 4 ∈ ℂ
7 4ne0 11155 . . . . . . . 8 4 ≠ 0
86, 7pm3.2i 470 . . . . . . 7 (4 ∈ ℂ ∧ 4 ≠ 0)
98a1i 11 . . . . . 6 (𝑀 ∈ ℤ → (4 ∈ ℂ ∧ 4 ≠ 0))
10 divdir 10748 . . . . . 6 (((2 · 𝑀) ∈ ℂ ∧ 1 ∈ ℂ ∧ (4 ∈ ℂ ∧ 4 ≠ 0)) → (((2 · 𝑀) + 1) / 4) = (((2 · 𝑀) / 4) + (1 / 4)))
114, 5, 9, 10syl3anc 1366 . . . . 5 (𝑀 ∈ ℤ → (((2 · 𝑀) + 1) / 4) = (((2 · 𝑀) / 4) + (1 / 4)))
12 2t2e4 11215 . . . . . . . . . 10 (2 · 2) = 4
1312eqcomi 2660 . . . . . . . . 9 4 = (2 · 2)
1413a1i 11 . . . . . . . 8 (𝑀 ∈ ℤ → 4 = (2 · 2))
1514oveq2d 6706 . . . . . . 7 (𝑀 ∈ ℤ → ((2 · 𝑀) / 4) = ((2 · 𝑀) / (2 · 2)))
16 2ne0 11151 . . . . . . . . 9 2 ≠ 0
1716a1i 11 . . . . . . . 8 (𝑀 ∈ ℤ → 2 ≠ 0)
183, 2, 2, 17, 17divcan5d 10865 . . . . . . 7 (𝑀 ∈ ℤ → ((2 · 𝑀) / (2 · 2)) = (𝑀 / 2))
1915, 18eqtrd 2685 . . . . . 6 (𝑀 ∈ ℤ → ((2 · 𝑀) / 4) = (𝑀 / 2))
2019oveq1d 6705 . . . . 5 (𝑀 ∈ ℤ → (((2 · 𝑀) / 4) + (1 / 4)) = ((𝑀 / 2) + (1 / 4)))
2111, 20eqtrd 2685 . . . 4 (𝑀 ∈ ℤ → (((2 · 𝑀) + 1) / 4) = ((𝑀 / 2) + (1 / 4)))
221, 21sylan9eqr 2707 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 = ((2 · 𝑀) + 1)) → (𝑁 / 4) = ((𝑀 / 2) + (1 / 4)))
2322fveq2d 6233 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 = ((2 · 𝑀) + 1)) → (⌊‘(𝑁 / 4)) = (⌊‘((𝑀 / 2) + (1 / 4))))
24 iftrue 4125 . . . . . . 7 (2 ∥ 𝑀 → if(2 ∥ 𝑀, (𝑀 / 2), ((𝑀 − 1) / 2)) = (𝑀 / 2))
2524adantr 480 . . . . . 6 ((2 ∥ 𝑀𝑀 ∈ ℤ) → if(2 ∥ 𝑀, (𝑀 / 2), ((𝑀 − 1) / 2)) = (𝑀 / 2))
26 1re 10077 . . . . . . . . 9 1 ∈ ℝ
27 0le1 10589 . . . . . . . . 9 0 ≤ 1
28 4re 11135 . . . . . . . . 9 4 ∈ ℝ
29 4pos 11154 . . . . . . . . 9 0 < 4
30 divge0 10930 . . . . . . . . 9 (((1 ∈ ℝ ∧ 0 ≤ 1) ∧ (4 ∈ ℝ ∧ 0 < 4)) → 0 ≤ (1 / 4))
3126, 27, 28, 29, 30mp4an 709 . . . . . . . 8 0 ≤ (1 / 4)
32 1lt4 11237 . . . . . . . . 9 1 < 4
33 recgt1 10957 . . . . . . . . . 10 ((4 ∈ ℝ ∧ 0 < 4) → (1 < 4 ↔ (1 / 4) < 1))
3428, 29, 33mp2an 708 . . . . . . . . 9 (1 < 4 ↔ (1 / 4) < 1)
3532, 34mpbi 220 . . . . . . . 8 (1 / 4) < 1
3631, 35pm3.2i 470 . . . . . . 7 (0 ≤ (1 / 4) ∧ (1 / 4) < 1)
37 2z 11447 . . . . . . . . . . 11 2 ∈ ℤ
3837a1i 11 . . . . . . . . . 10 (𝑀 ∈ ℤ → 2 ∈ ℤ)
39 id 22 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ ℤ)
40 dvdsval2 15030 . . . . . . . . . 10 ((2 ∈ ℤ ∧ 2 ≠ 0 ∧ 𝑀 ∈ ℤ) → (2 ∥ 𝑀 ↔ (𝑀 / 2) ∈ ℤ))
4138, 17, 39, 40syl3anc 1366 . . . . . . . . 9 (𝑀 ∈ ℤ → (2 ∥ 𝑀 ↔ (𝑀 / 2) ∈ ℤ))
4241biimpac 502 . . . . . . . 8 ((2 ∥ 𝑀𝑀 ∈ ℤ) → (𝑀 / 2) ∈ ℤ)
43 4nn 11225 . . . . . . . . 9 4 ∈ ℕ
44 nnrecre 11095 . . . . . . . . 9 (4 ∈ ℕ → (1 / 4) ∈ ℝ)
4543, 44ax-mp 5 . . . . . . . 8 (1 / 4) ∈ ℝ
46 flbi2 12658 . . . . . . . 8 (((𝑀 / 2) ∈ ℤ ∧ (1 / 4) ∈ ℝ) → ((⌊‘((𝑀 / 2) + (1 / 4))) = (𝑀 / 2) ↔ (0 ≤ (1 / 4) ∧ (1 / 4) < 1)))
4742, 45, 46sylancl 695 . . . . . . 7 ((2 ∥ 𝑀𝑀 ∈ ℤ) → ((⌊‘((𝑀 / 2) + (1 / 4))) = (𝑀 / 2) ↔ (0 ≤ (1 / 4) ∧ (1 / 4) < 1)))
4836, 47mpbiri 248 . . . . . 6 ((2 ∥ 𝑀𝑀 ∈ ℤ) → (⌊‘((𝑀 / 2) + (1 / 4))) = (𝑀 / 2))
4925, 48eqtr4d 2688 . . . . 5 ((2 ∥ 𝑀𝑀 ∈ ℤ) → if(2 ∥ 𝑀, (𝑀 / 2), ((𝑀 − 1) / 2)) = (⌊‘((𝑀 / 2) + (1 / 4))))
50 iffalse 4128 . . . . . . 7 (¬ 2 ∥ 𝑀 → if(2 ∥ 𝑀, (𝑀 / 2), ((𝑀 − 1) / 2)) = ((𝑀 − 1) / 2))
5150adantr 480 . . . . . 6 ((¬ 2 ∥ 𝑀𝑀 ∈ ℤ) → if(2 ∥ 𝑀, (𝑀 / 2), ((𝑀 − 1) / 2)) = ((𝑀 − 1) / 2))
52 odd2np1 15112 . . . . . . . 8 (𝑀 ∈ ℤ → (¬ 2 ∥ 𝑀 ↔ ∃𝑥 ∈ ℤ ((2 · 𝑥) + 1) = 𝑀))
53 ax-1cn 10032 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℂ
54 2cnne0 11280 . . . . . . . . . . . . . . . . . . . . 21 (2 ∈ ℂ ∧ 2 ≠ 0)
55 divcan5 10765 . . . . . . . . . . . . . . . . . . . . 21 ((1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((2 · 1) / (2 · 2)) = (1 / 2))
5653, 54, 54, 55mp3an 1464 . . . . . . . . . . . . . . . . . . . 20 ((2 · 1) / (2 · 2)) = (1 / 2)
57 2t1e2 11214 . . . . . . . . . . . . . . . . . . . . 21 (2 · 1) = 2
5857, 12oveq12i 6702 . . . . . . . . . . . . . . . . . . . 20 ((2 · 1) / (2 · 2)) = (2 / 4)
5956, 58eqtr3i 2675 . . . . . . . . . . . . . . . . . . 19 (1 / 2) = (2 / 4)
6059oveq1i 6700 . . . . . . . . . . . . . . . . . 18 ((1 / 2) + (1 / 4)) = ((2 / 4) + (1 / 4))
61 2cn 11129 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℂ
6261, 53, 6, 7divdiri 10820 . . . . . . . . . . . . . . . . . 18 ((2 + 1) / 4) = ((2 / 4) + (1 / 4))
63 2p1e3 11189 . . . . . . . . . . . . . . . . . . 19 (2 + 1) = 3
6463oveq1i 6700 . . . . . . . . . . . . . . . . . 18 ((2 + 1) / 4) = (3 / 4)
6560, 62, 643eqtr2i 2679 . . . . . . . . . . . . . . . . 17 ((1 / 2) + (1 / 4)) = (3 / 4)
6665a1i 11 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℤ → ((1 / 2) + (1 / 4)) = (3 / 4))
6766oveq2d 6706 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℤ → (𝑥 + ((1 / 2) + (1 / 4))) = (𝑥 + (3 / 4)))
6867fveq2d 6233 . . . . . . . . . . . . . 14 (𝑥 ∈ ℤ → (⌊‘(𝑥 + ((1 / 2) + (1 / 4)))) = (⌊‘(𝑥 + (3 / 4))))
69 3re 11132 . . . . . . . . . . . . . . . . 17 3 ∈ ℝ
70 0re 10078 . . . . . . . . . . . . . . . . . 18 0 ∈ ℝ
71 3pos 11152 . . . . . . . . . . . . . . . . . 18 0 < 3
7270, 69, 71ltleii 10198 . . . . . . . . . . . . . . . . 17 0 ≤ 3
73 divge0 10930 . . . . . . . . . . . . . . . . 17 (((3 ∈ ℝ ∧ 0 ≤ 3) ∧ (4 ∈ ℝ ∧ 0 < 4)) → 0 ≤ (3 / 4))
7469, 72, 28, 29, 73mp4an 709 . . . . . . . . . . . . . . . 16 0 ≤ (3 / 4)
75 3lt4 11235 . . . . . . . . . . . . . . . . 17 3 < 4
76 nnrp 11880 . . . . . . . . . . . . . . . . . . 19 (4 ∈ ℕ → 4 ∈ ℝ+)
7743, 76ax-mp 5 . . . . . . . . . . . . . . . . . 18 4 ∈ ℝ+
78 divlt1lt 11937 . . . . . . . . . . . . . . . . . 18 ((3 ∈ ℝ ∧ 4 ∈ ℝ+) → ((3 / 4) < 1 ↔ 3 < 4))
7969, 77, 78mp2an 708 . . . . . . . . . . . . . . . . 17 ((3 / 4) < 1 ↔ 3 < 4)
8075, 79mpbir 221 . . . . . . . . . . . . . . . 16 (3 / 4) < 1
8174, 80pm3.2i 470 . . . . . . . . . . . . . . 15 (0 ≤ (3 / 4) ∧ (3 / 4) < 1)
8269, 28, 7redivcli 10830 . . . . . . . . . . . . . . . 16 (3 / 4) ∈ ℝ
83 flbi2 12658 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℤ ∧ (3 / 4) ∈ ℝ) → ((⌊‘(𝑥 + (3 / 4))) = 𝑥 ↔ (0 ≤ (3 / 4) ∧ (3 / 4) < 1)))
8482, 83mpan2 707 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℤ → ((⌊‘(𝑥 + (3 / 4))) = 𝑥 ↔ (0 ≤ (3 / 4) ∧ (3 / 4) < 1)))
8581, 84mpbiri 248 . . . . . . . . . . . . . 14 (𝑥 ∈ ℤ → (⌊‘(𝑥 + (3 / 4))) = 𝑥)
8668, 85eqtrd 2685 . . . . . . . . . . . . 13 (𝑥 ∈ ℤ → (⌊‘(𝑥 + ((1 / 2) + (1 / 4)))) = 𝑥)
8786adantr 480 . . . . . . . . . . . 12 ((𝑥 ∈ ℤ ∧ ((2 · 𝑥) + 1) = 𝑀) → (⌊‘(𝑥 + ((1 / 2) + (1 / 4)))) = 𝑥)
88 oveq1 6697 . . . . . . . . . . . . . . . . 17 (𝑀 = ((2 · 𝑥) + 1) → (𝑀 / 2) = (((2 · 𝑥) + 1) / 2))
8988eqcoms 2659 . . . . . . . . . . . . . . . 16 (((2 · 𝑥) + 1) = 𝑀 → (𝑀 / 2) = (((2 · 𝑥) + 1) / 2))
9037a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℤ → 2 ∈ ℤ)
91 id 22 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℤ → 𝑥 ∈ ℤ)
9290, 91zmulcld 11526 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℤ → (2 · 𝑥) ∈ ℤ)
9392zcnd 11521 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℤ → (2 · 𝑥) ∈ ℂ)
94 1cnd 10094 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℤ → 1 ∈ ℂ)
9554a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℤ → (2 ∈ ℂ ∧ 2 ≠ 0))
96 divdir 10748 . . . . . . . . . . . . . . . . . 18 (((2 · 𝑥) ∈ ℂ ∧ 1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (((2 · 𝑥) + 1) / 2) = (((2 · 𝑥) / 2) + (1 / 2)))
9793, 94, 95, 96syl3anc 1366 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℤ → (((2 · 𝑥) + 1) / 2) = (((2 · 𝑥) / 2) + (1 / 2)))
98 zcn 11420 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
99 2cnd 11131 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℤ → 2 ∈ ℂ)
10016a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℤ → 2 ≠ 0)
10198, 99, 100divcan3d 10844 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℤ → ((2 · 𝑥) / 2) = 𝑥)
102101oveq1d 6705 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℤ → (((2 · 𝑥) / 2) + (1 / 2)) = (𝑥 + (1 / 2)))
10397, 102eqtrd 2685 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℤ → (((2 · 𝑥) + 1) / 2) = (𝑥 + (1 / 2)))
10489, 103sylan9eqr 2707 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℤ ∧ ((2 · 𝑥) + 1) = 𝑀) → (𝑀 / 2) = (𝑥 + (1 / 2)))
105104oveq1d 6705 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℤ ∧ ((2 · 𝑥) + 1) = 𝑀) → ((𝑀 / 2) + (1 / 4)) = ((𝑥 + (1 / 2)) + (1 / 4)))
106 halfcn 11285 . . . . . . . . . . . . . . . . 17 (1 / 2) ∈ ℂ
107106a1i 11 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℤ → (1 / 2) ∈ ℂ)
1086, 7reccli 10793 . . . . . . . . . . . . . . . . 17 (1 / 4) ∈ ℂ
109108a1i 11 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℤ → (1 / 4) ∈ ℂ)
11098, 107, 109addassd 10100 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℤ → ((𝑥 + (1 / 2)) + (1 / 4)) = (𝑥 + ((1 / 2) + (1 / 4))))
111110adantr 480 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℤ ∧ ((2 · 𝑥) + 1) = 𝑀) → ((𝑥 + (1 / 2)) + (1 / 4)) = (𝑥 + ((1 / 2) + (1 / 4))))
112105, 111eqtrd 2685 . . . . . . . . . . . . 13 ((𝑥 ∈ ℤ ∧ ((2 · 𝑥) + 1) = 𝑀) → ((𝑀 / 2) + (1 / 4)) = (𝑥 + ((1 / 2) + (1 / 4))))
113112fveq2d 6233 . . . . . . . . . . . 12 ((𝑥 ∈ ℤ ∧ ((2 · 𝑥) + 1) = 𝑀) → (⌊‘((𝑀 / 2) + (1 / 4))) = (⌊‘(𝑥 + ((1 / 2) + (1 / 4)))))
114 oveq1 6697 . . . . . . . . . . . . . . . 16 (𝑀 = ((2 · 𝑥) + 1) → (𝑀 − 1) = (((2 · 𝑥) + 1) − 1))
115114eqcoms 2659 . . . . . . . . . . . . . . 15 (((2 · 𝑥) + 1) = 𝑀 → (𝑀 − 1) = (((2 · 𝑥) + 1) − 1))
116 pncan1 10492 . . . . . . . . . . . . . . . 16 ((2 · 𝑥) ∈ ℂ → (((2 · 𝑥) + 1) − 1) = (2 · 𝑥))
11793, 116syl 17 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℤ → (((2 · 𝑥) + 1) − 1) = (2 · 𝑥))
118115, 117sylan9eqr 2707 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℤ ∧ ((2 · 𝑥) + 1) = 𝑀) → (𝑀 − 1) = (2 · 𝑥))
119118oveq1d 6705 . . . . . . . . . . . . 13 ((𝑥 ∈ ℤ ∧ ((2 · 𝑥) + 1) = 𝑀) → ((𝑀 − 1) / 2) = ((2 · 𝑥) / 2))
120101adantr 480 . . . . . . . . . . . . 13 ((𝑥 ∈ ℤ ∧ ((2 · 𝑥) + 1) = 𝑀) → ((2 · 𝑥) / 2) = 𝑥)
121119, 120eqtrd 2685 . . . . . . . . . . . 12 ((𝑥 ∈ ℤ ∧ ((2 · 𝑥) + 1) = 𝑀) → ((𝑀 − 1) / 2) = 𝑥)
12287, 113, 1213eqtr4rd 2696 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ ((2 · 𝑥) + 1) = 𝑀) → ((𝑀 − 1) / 2) = (⌊‘((𝑀 / 2) + (1 / 4))))
123122ex 449 . . . . . . . . . 10 (𝑥 ∈ ℤ → (((2 · 𝑥) + 1) = 𝑀 → ((𝑀 − 1) / 2) = (⌊‘((𝑀 / 2) + (1 / 4)))))
124123adantl 481 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (((2 · 𝑥) + 1) = 𝑀 → ((𝑀 − 1) / 2) = (⌊‘((𝑀 / 2) + (1 / 4)))))
125124rexlimdva 3060 . . . . . . . 8 (𝑀 ∈ ℤ → (∃𝑥 ∈ ℤ ((2 · 𝑥) + 1) = 𝑀 → ((𝑀 − 1) / 2) = (⌊‘((𝑀 / 2) + (1 / 4)))))
12652, 125sylbid 230 . . . . . . 7 (𝑀 ∈ ℤ → (¬ 2 ∥ 𝑀 → ((𝑀 − 1) / 2) = (⌊‘((𝑀 / 2) + (1 / 4)))))
127126impcom 445 . . . . . 6 ((¬ 2 ∥ 𝑀𝑀 ∈ ℤ) → ((𝑀 − 1) / 2) = (⌊‘((𝑀 / 2) + (1 / 4))))
12851, 127eqtrd 2685 . . . . 5 ((¬ 2 ∥ 𝑀𝑀 ∈ ℤ) → if(2 ∥ 𝑀, (𝑀 / 2), ((𝑀 − 1) / 2)) = (⌊‘((𝑀 / 2) + (1 / 4))))
12949, 128pm2.61ian 848 . . . 4 (𝑀 ∈ ℤ → if(2 ∥ 𝑀, (𝑀 / 2), ((𝑀 − 1) / 2)) = (⌊‘((𝑀 / 2) + (1 / 4))))
130129eqcomd 2657 . . 3 (𝑀 ∈ ℤ → (⌊‘((𝑀 / 2) + (1 / 4))) = if(2 ∥ 𝑀, (𝑀 / 2), ((𝑀 − 1) / 2)))
131130adantr 480 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 = ((2 · 𝑀) + 1)) → (⌊‘((𝑀 / 2) + (1 / 4))) = if(2 ∥ 𝑀, (𝑀 / 2), ((𝑀 − 1) / 2)))
13223, 131eqtrd 2685 1 ((𝑀 ∈ ℤ ∧ 𝑁 = ((2 · 𝑀) + 1)) → (⌊‘(𝑁 / 4)) = if(2 ∥ 𝑀, (𝑀 / 2), ((𝑀 − 1) / 2)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wne 2823  wrex 2942  ifcif 4119   class class class wbr 4685  cfv 5926  (class class class)co 6690  cc 9972  cr 9973  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979   < clt 10112  cle 10113  cmin 10304   / cdiv 10722  cn 11058  2c2 11108  3c3 11109  4c4 11110  cz 11415  +crp 11870  cfl 12631  cdvds 15027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-fl 12633  df-dvds 15028
This theorem is referenced by:  2lgslem1c  25163
  Copyright terms: Public domain W3C validator