MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flodddiv4t2lthalf Structured version   Visualization version   GIF version

Theorem flodddiv4t2lthalf 15187
Description: The floor of an odd number divided by 4, multiplied by 2 is less than the half of the odd number. (Contributed by AV, 4-Jul-2021.)
Assertion
Ref Expression
flodddiv4t2lthalf ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → ((⌊‘(𝑁 / 4)) · 2) < (𝑁 / 2))

Proof of Theorem flodddiv4t2lthalf
StepHypRef Expression
1 flodddiv4lt 15186 . . 3 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (⌊‘(𝑁 / 4)) < (𝑁 / 4))
2 zre 11419 . . . . . . . 8 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
3 4re 11135 . . . . . . . . 9 4 ∈ ℝ
43a1i 11 . . . . . . . 8 (𝑁 ∈ ℤ → 4 ∈ ℝ)
5 4ne0 11155 . . . . . . . . 9 4 ≠ 0
65a1i 11 . . . . . . . 8 (𝑁 ∈ ℤ → 4 ≠ 0)
72, 4, 6redivcld 10891 . . . . . . 7 (𝑁 ∈ ℤ → (𝑁 / 4) ∈ ℝ)
87flcld 12639 . . . . . 6 (𝑁 ∈ ℤ → (⌊‘(𝑁 / 4)) ∈ ℤ)
98zred 11520 . . . . 5 (𝑁 ∈ ℤ → (⌊‘(𝑁 / 4)) ∈ ℝ)
109adantr 480 . . . 4 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (⌊‘(𝑁 / 4)) ∈ ℝ)
117adantr 480 . . . 4 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (𝑁 / 4) ∈ ℝ)
12 2re 11128 . . . . . 6 2 ∈ ℝ
13 2pos 11150 . . . . . 6 0 < 2
1412, 13pm3.2i 470 . . . . 5 (2 ∈ ℝ ∧ 0 < 2)
1514a1i 11 . . . 4 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (2 ∈ ℝ ∧ 0 < 2))
16 ltmul1 10911 . . . 4 (((⌊‘(𝑁 / 4)) ∈ ℝ ∧ (𝑁 / 4) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((⌊‘(𝑁 / 4)) < (𝑁 / 4) ↔ ((⌊‘(𝑁 / 4)) · 2) < ((𝑁 / 4) · 2)))
1710, 11, 15, 16syl3anc 1366 . . 3 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → ((⌊‘(𝑁 / 4)) < (𝑁 / 4) ↔ ((⌊‘(𝑁 / 4)) · 2) < ((𝑁 / 4) · 2)))
181, 17mpbid 222 . 2 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → ((⌊‘(𝑁 / 4)) · 2) < ((𝑁 / 4) · 2))
19 zcn 11420 . . . . . 6 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
2019halfcld 11315 . . . . 5 (𝑁 ∈ ℤ → (𝑁 / 2) ∈ ℂ)
21 2cnd 11131 . . . . 5 (𝑁 ∈ ℤ → 2 ∈ ℂ)
22 2ne0 11151 . . . . . 6 2 ≠ 0
2322a1i 11 . . . . 5 (𝑁 ∈ ℤ → 2 ≠ 0)
2420, 21, 23divcan1d 10840 . . . 4 (𝑁 ∈ ℤ → (((𝑁 / 2) / 2) · 2) = (𝑁 / 2))
25 2cnne0 11280 . . . . . . . 8 (2 ∈ ℂ ∧ 2 ≠ 0)
2625a1i 11 . . . . . . 7 (𝑁 ∈ ℤ → (2 ∈ ℂ ∧ 2 ≠ 0))
27 divdiv1 10774 . . . . . . 7 ((𝑁 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((𝑁 / 2) / 2) = (𝑁 / (2 · 2)))
2819, 26, 26, 27syl3anc 1366 . . . . . 6 (𝑁 ∈ ℤ → ((𝑁 / 2) / 2) = (𝑁 / (2 · 2)))
29 2t2e4 11215 . . . . . . . 8 (2 · 2) = 4
3029a1i 11 . . . . . . 7 (𝑁 ∈ ℤ → (2 · 2) = 4)
3130oveq2d 6706 . . . . . 6 (𝑁 ∈ ℤ → (𝑁 / (2 · 2)) = (𝑁 / 4))
3228, 31eqtrd 2685 . . . . 5 (𝑁 ∈ ℤ → ((𝑁 / 2) / 2) = (𝑁 / 4))
3332oveq1d 6705 . . . 4 (𝑁 ∈ ℤ → (((𝑁 / 2) / 2) · 2) = ((𝑁 / 4) · 2))
3424, 33eqtr3d 2687 . . 3 (𝑁 ∈ ℤ → (𝑁 / 2) = ((𝑁 / 4) · 2))
3534adantr 480 . 2 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (𝑁 / 2) = ((𝑁 / 4) · 2))
3618, 35breqtrrd 4713 1 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → ((⌊‘(𝑁 / 4)) · 2) < (𝑁 / 2))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wne 2823   class class class wbr 4685  cfv 5926  (class class class)co 6690  cc 9972  cr 9973  0cc0 9974   · cmul 9979   < clt 10112   / cdiv 10722  2c2 11108  4c4 11110  cz 11415  cfl 12631  cdvds 15027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-n0 11331  df-z 11416  df-uz 11726  df-fl 12633  df-dvds 15028
This theorem is referenced by:  gausslemma2dlem0e  25130
  Copyright terms: Public domain W3C validator