MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flval3 Structured version   Visualization version   GIF version

Theorem flval3 13173
Description: An alternate way to define the floor (greatest integer) function, as the supremum of all integers less than or equal to its argument. (Contributed by NM, 15-Nov-2004.) (Proof shortened by Mario Carneiro, 6-Sep-2014.)
Assertion
Ref Expression
flval3 (𝐴 ∈ ℝ → (⌊‘𝐴) = sup({𝑥 ∈ ℤ ∣ 𝑥𝐴}, ℝ, < ))
Distinct variable group:   𝑥,𝐴

Proof of Theorem flval3
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 4053 . . . . 5 {𝑥 ∈ ℤ ∣ 𝑥𝐴} ⊆ ℤ
2 zssre 11976 . . . . 5 ℤ ⊆ ℝ
31, 2sstri 3973 . . . 4 {𝑥 ∈ ℤ ∣ 𝑥𝐴} ⊆ ℝ
43a1i 11 . . 3 (𝐴 ∈ ℝ → {𝑥 ∈ ℤ ∣ 𝑥𝐴} ⊆ ℝ)
5 breq1 5060 . . . . 5 (𝑥 = (⌊‘𝐴) → (𝑥𝐴 ↔ (⌊‘𝐴) ≤ 𝐴))
6 flcl 13153 . . . . 5 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℤ)
7 flle 13157 . . . . 5 (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴)
85, 6, 7elrabd 3679 . . . 4 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ {𝑥 ∈ ℤ ∣ 𝑥𝐴})
98ne0d 4298 . . 3 (𝐴 ∈ ℝ → {𝑥 ∈ ℤ ∣ 𝑥𝐴} ≠ ∅)
10 reflcl 13154 . . . 4 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ)
11 breq1 5060 . . . . . . 7 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
1211elrab 3677 . . . . . 6 (𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥𝐴} ↔ (𝑧 ∈ ℤ ∧ 𝑧𝐴))
13 flge 13163 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℤ) → (𝑧𝐴𝑧 ≤ (⌊‘𝐴)))
1413biimpd 230 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℤ) → (𝑧𝐴𝑧 ≤ (⌊‘𝐴)))
1514expimpd 454 . . . . . 6 (𝐴 ∈ ℝ → ((𝑧 ∈ ℤ ∧ 𝑧𝐴) → 𝑧 ≤ (⌊‘𝐴)))
1612, 15syl5bi 243 . . . . 5 (𝐴 ∈ ℝ → (𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥𝐴} → 𝑧 ≤ (⌊‘𝐴)))
1716ralrimiv 3178 . . . 4 (𝐴 ∈ ℝ → ∀𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥𝐴}𝑧 ≤ (⌊‘𝐴))
18 brralrspcev 5117 . . . 4 (((⌊‘𝐴) ∈ ℝ ∧ ∀𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥𝐴}𝑧 ≤ (⌊‘𝐴)) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥𝐴}𝑧𝑦)
1910, 17, 18syl2anc 584 . . 3 (𝐴 ∈ ℝ → ∃𝑦 ∈ ℝ ∀𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥𝐴}𝑧𝑦)
204, 9, 19, 8suprubd 11591 . 2 (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ sup({𝑥 ∈ ℤ ∣ 𝑥𝐴}, ℝ, < ))
21 suprleub 11595 . . . 4 ((({𝑥 ∈ ℤ ∣ 𝑥𝐴} ⊆ ℝ ∧ {𝑥 ∈ ℤ ∣ 𝑥𝐴} ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥𝐴}𝑧𝑦) ∧ (⌊‘𝐴) ∈ ℝ) → (sup({𝑥 ∈ ℤ ∣ 𝑥𝐴}, ℝ, < ) ≤ (⌊‘𝐴) ↔ ∀𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥𝐴}𝑧 ≤ (⌊‘𝐴)))
224, 9, 19, 10, 21syl31anc 1365 . . 3 (𝐴 ∈ ℝ → (sup({𝑥 ∈ ℤ ∣ 𝑥𝐴}, ℝ, < ) ≤ (⌊‘𝐴) ↔ ∀𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥𝐴}𝑧 ≤ (⌊‘𝐴)))
2317, 22mpbird 258 . 2 (𝐴 ∈ ℝ → sup({𝑥 ∈ ℤ ∣ 𝑥𝐴}, ℝ, < ) ≤ (⌊‘𝐴))
244, 9, 19suprcld 11592 . . 3 (𝐴 ∈ ℝ → sup({𝑥 ∈ ℤ ∣ 𝑥𝐴}, ℝ, < ) ∈ ℝ)
2510, 24letri3d 10770 . 2 (𝐴 ∈ ℝ → ((⌊‘𝐴) = sup({𝑥 ∈ ℤ ∣ 𝑥𝐴}, ℝ, < ) ↔ ((⌊‘𝐴) ≤ sup({𝑥 ∈ ℤ ∣ 𝑥𝐴}, ℝ, < ) ∧ sup({𝑥 ∈ ℤ ∣ 𝑥𝐴}, ℝ, < ) ≤ (⌊‘𝐴))))
2620, 23, 25mpbir2and 709 1 (𝐴 ∈ ℝ → (⌊‘𝐴) = sup({𝑥 ∈ ℤ ∣ 𝑥𝐴}, ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  wne 3013  wral 3135  wrex 3136  {crab 3139  wss 3933  c0 4288   class class class wbr 5057  cfv 6348  supcsup 8892  cr 10524   < clt 10663  cle 10664  cz 11969  cfl 13148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-sup 8894  df-inf 8895  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-n0 11886  df-z 11970  df-uz 12232  df-fl 13150
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator