MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmfnfmlem2 Structured version   Visualization version   GIF version

Theorem fmfnfmlem2 21669
Description: Lemma for fmfnfm 21672. (Contributed by Jeff Hankins, 19-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Hypotheses
Ref Expression
fmfnfm.b (𝜑𝐵 ∈ (fBas‘𝑌))
fmfnfm.l (𝜑𝐿 ∈ (Fil‘𝑋))
fmfnfm.f (𝜑𝐹:𝑌𝑋)
fmfnfm.fm (𝜑 → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ 𝐿)
Assertion
Ref Expression
fmfnfmlem2 (𝜑 → (∃𝑥𝐿 𝑠 = (𝐹𝑥) → ((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
Distinct variable groups:   𝑡,𝑠,𝑥,𝐵   𝐹,𝑠,𝑡,𝑥   𝐿,𝑠,𝑡,𝑥   𝜑,𝑠,𝑡,𝑥   𝑋,𝑠,𝑡,𝑥   𝑌,𝑠,𝑡,𝑥

Proof of Theorem fmfnfmlem2
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmfnfm.l . . . . . 6 (𝜑𝐿 ∈ (Fil‘𝑋))
21ad2antrr 761 . . . . 5 (((𝜑𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → 𝐿 ∈ (Fil‘𝑋))
3 simplr 791 . . . . . 6 (((𝜑𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → 𝑥𝐿)
4 fmfnfm.fm . . . . . . . 8 (𝜑 → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ 𝐿)
5 fmfnfm.f . . . . . . . . . 10 (𝜑𝐹:𝑌𝑋)
6 ffn 6002 . . . . . . . . . . 11 (𝐹:𝑌𝑋𝐹 Fn 𝑌)
7 dffn4 6078 . . . . . . . . . . 11 (𝐹 Fn 𝑌𝐹:𝑌onto→ran 𝐹)
86, 7sylib 208 . . . . . . . . . 10 (𝐹:𝑌𝑋𝐹:𝑌onto→ran 𝐹)
9 foima 6077 . . . . . . . . . 10 (𝐹:𝑌onto→ran 𝐹 → (𝐹𝑌) = ran 𝐹)
105, 8, 93syl 18 . . . . . . . . 9 (𝜑 → (𝐹𝑌) = ran 𝐹)
11 filtop 21569 . . . . . . . . . . 11 (𝐿 ∈ (Fil‘𝑋) → 𝑋𝐿)
121, 11syl 17 . . . . . . . . . 10 (𝜑𝑋𝐿)
13 fmfnfm.b . . . . . . . . . 10 (𝜑𝐵 ∈ (fBas‘𝑌))
14 fgcl 21592 . . . . . . . . . . 11 (𝐵 ∈ (fBas‘𝑌) → (𝑌filGen𝐵) ∈ (Fil‘𝑌))
15 filtop 21569 . . . . . . . . . . 11 ((𝑌filGen𝐵) ∈ (Fil‘𝑌) → 𝑌 ∈ (𝑌filGen𝐵))
1613, 14, 153syl 18 . . . . . . . . . 10 (𝜑𝑌 ∈ (𝑌filGen𝐵))
17 eqid 2621 . . . . . . . . . . 11 (𝑌filGen𝐵) = (𝑌filGen𝐵)
1817imaelfm 21665 . . . . . . . . . 10 (((𝑋𝐿𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑌 ∈ (𝑌filGen𝐵)) → (𝐹𝑌) ∈ ((𝑋 FilMap 𝐹)‘𝐵))
1912, 13, 5, 16, 18syl31anc 1326 . . . . . . . . 9 (𝜑 → (𝐹𝑌) ∈ ((𝑋 FilMap 𝐹)‘𝐵))
2010, 19eqeltrrd 2699 . . . . . . . 8 (𝜑 → ran 𝐹 ∈ ((𝑋 FilMap 𝐹)‘𝐵))
214, 20sseldd 3584 . . . . . . 7 (𝜑 → ran 𝐹𝐿)
2221ad2antrr 761 . . . . . 6 (((𝜑𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → ran 𝐹𝐿)
23 filin 21568 . . . . . 6 ((𝐿 ∈ (Fil‘𝑋) ∧ 𝑥𝐿 ∧ ran 𝐹𝐿) → (𝑥 ∩ ran 𝐹) ∈ 𝐿)
242, 3, 22, 23syl3anc 1323 . . . . 5 (((𝜑𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → (𝑥 ∩ ran 𝐹) ∈ 𝐿)
25 simprr 795 . . . . 5 (((𝜑𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → 𝑡𝑋)
26 elin 3774 . . . . . . 7 (𝑦 ∈ (𝑥 ∩ ran 𝐹) ↔ (𝑦𝑥𝑦 ∈ ran 𝐹))
27 fvelrnb 6200 . . . . . . . . . . . . 13 (𝐹 Fn 𝑌 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑧𝑌 (𝐹𝑧) = 𝑦))
285, 6, 273syl 18 . . . . . . . . . . . 12 (𝜑 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑧𝑌 (𝐹𝑧) = 𝑦))
2928ad2antrr 761 . . . . . . . . . . 11 (((𝜑𝑥𝐿) ∧ (𝐹 “ (𝐹𝑥)) ⊆ 𝑡) → (𝑦 ∈ ran 𝐹 ↔ ∃𝑧𝑌 (𝐹𝑧) = 𝑦))
30 ffun 6005 . . . . . . . . . . . . . . . . . 18 (𝐹:𝑌𝑋 → Fun 𝐹)
315, 30syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → Fun 𝐹)
3231ad2antrr 761 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑧𝑌)) → Fun 𝐹)
33 simprr 795 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑧𝑌)) → 𝑧𝑌)
34 fdm 6008 . . . . . . . . . . . . . . . . . . 19 (𝐹:𝑌𝑋 → dom 𝐹 = 𝑌)
355, 34syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → dom 𝐹 = 𝑌)
3635ad2antrr 761 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑧𝑌)) → dom 𝐹 = 𝑌)
3733, 36eleqtrrd 2701 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑧𝑌)) → 𝑧 ∈ dom 𝐹)
38 fvimacnv 6288 . . . . . . . . . . . . . . . 16 ((Fun 𝐹𝑧 ∈ dom 𝐹) → ((𝐹𝑧) ∈ 𝑥𝑧 ∈ (𝐹𝑥)))
3932, 37, 38syl2anc 692 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑧𝑌)) → ((𝐹𝑧) ∈ 𝑥𝑧 ∈ (𝐹𝑥)))
40 cnvimass 5444 . . . . . . . . . . . . . . . . 17 (𝐹𝑥) ⊆ dom 𝐹
41 funfvima2 6447 . . . . . . . . . . . . . . . . 17 ((Fun 𝐹 ∧ (𝐹𝑥) ⊆ dom 𝐹) → (𝑧 ∈ (𝐹𝑥) → (𝐹𝑧) ∈ (𝐹 “ (𝐹𝑥))))
4232, 40, 41sylancl 693 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑧𝑌)) → (𝑧 ∈ (𝐹𝑥) → (𝐹𝑧) ∈ (𝐹 “ (𝐹𝑥))))
43 ssel 3577 . . . . . . . . . . . . . . . . 17 ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡 → ((𝐹𝑧) ∈ (𝐹 “ (𝐹𝑥)) → (𝐹𝑧) ∈ 𝑡))
4443ad2antrl 763 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑧𝑌)) → ((𝐹𝑧) ∈ (𝐹 “ (𝐹𝑥)) → (𝐹𝑧) ∈ 𝑡))
4542, 44syld 47 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑧𝑌)) → (𝑧 ∈ (𝐹𝑥) → (𝐹𝑧) ∈ 𝑡))
4639, 45sylbid 230 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑧𝑌)) → ((𝐹𝑧) ∈ 𝑥 → (𝐹𝑧) ∈ 𝑡))
47 eleq1 2686 . . . . . . . . . . . . . . 15 ((𝐹𝑧) = 𝑦 → ((𝐹𝑧) ∈ 𝑥𝑦𝑥))
48 eleq1 2686 . . . . . . . . . . . . . . 15 ((𝐹𝑧) = 𝑦 → ((𝐹𝑧) ∈ 𝑡𝑦𝑡))
4947, 48imbi12d 334 . . . . . . . . . . . . . 14 ((𝐹𝑧) = 𝑦 → (((𝐹𝑧) ∈ 𝑥 → (𝐹𝑧) ∈ 𝑡) ↔ (𝑦𝑥𝑦𝑡)))
5046, 49syl5ibcom 235 . . . . . . . . . . . . 13 (((𝜑𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑧𝑌)) → ((𝐹𝑧) = 𝑦 → (𝑦𝑥𝑦𝑡)))
5150expr 642 . . . . . . . . . . . 12 (((𝜑𝑥𝐿) ∧ (𝐹 “ (𝐹𝑥)) ⊆ 𝑡) → (𝑧𝑌 → ((𝐹𝑧) = 𝑦 → (𝑦𝑥𝑦𝑡))))
5251rexlimdv 3023 . . . . . . . . . . 11 (((𝜑𝑥𝐿) ∧ (𝐹 “ (𝐹𝑥)) ⊆ 𝑡) → (∃𝑧𝑌 (𝐹𝑧) = 𝑦 → (𝑦𝑥𝑦𝑡)))
5329, 52sylbid 230 . . . . . . . . . 10 (((𝜑𝑥𝐿) ∧ (𝐹 “ (𝐹𝑥)) ⊆ 𝑡) → (𝑦 ∈ ran 𝐹 → (𝑦𝑥𝑦𝑡)))
5453com23 86 . . . . . . . . 9 (((𝜑𝑥𝐿) ∧ (𝐹 “ (𝐹𝑥)) ⊆ 𝑡) → (𝑦𝑥 → (𝑦 ∈ ran 𝐹𝑦𝑡)))
5554impd 447 . . . . . . . 8 (((𝜑𝑥𝐿) ∧ (𝐹 “ (𝐹𝑥)) ⊆ 𝑡) → ((𝑦𝑥𝑦 ∈ ran 𝐹) → 𝑦𝑡))
5655adantrr 752 . . . . . . 7 (((𝜑𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → ((𝑦𝑥𝑦 ∈ ran 𝐹) → 𝑦𝑡))
5726, 56syl5bi 232 . . . . . 6 (((𝜑𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → (𝑦 ∈ (𝑥 ∩ ran 𝐹) → 𝑦𝑡))
5857ssrdv 3589 . . . . 5 (((𝜑𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → (𝑥 ∩ ran 𝐹) ⊆ 𝑡)
59 filss 21567 . . . . 5 ((𝐿 ∈ (Fil‘𝑋) ∧ ((𝑥 ∩ ran 𝐹) ∈ 𝐿𝑡𝑋 ∧ (𝑥 ∩ ran 𝐹) ⊆ 𝑡)) → 𝑡𝐿)
602, 24, 25, 58, 59syl13anc 1325 . . . 4 (((𝜑𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → 𝑡𝐿)
6160exp32 630 . . 3 ((𝜑𝑥𝐿) → ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿)))
62 imaeq2 5421 . . . . 5 (𝑠 = (𝐹𝑥) → (𝐹𝑠) = (𝐹 “ (𝐹𝑥)))
6362sseq1d 3611 . . . 4 (𝑠 = (𝐹𝑥) → ((𝐹𝑠) ⊆ 𝑡 ↔ (𝐹 “ (𝐹𝑥)) ⊆ 𝑡))
6463imbi1d 331 . . 3 (𝑠 = (𝐹𝑥) → (((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿)) ↔ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
6561, 64syl5ibrcom 237 . 2 ((𝜑𝑥𝐿) → (𝑠 = (𝐹𝑥) → ((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
6665rexlimdva 3024 1 (𝜑 → (∃𝑥𝐿 𝑠 = (𝐹𝑥) → ((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wrex 2908  cin 3554  wss 3555  ccnv 5073  dom cdm 5074  ran crn 5075  cima 5077  Fun wfun 5841   Fn wfn 5842  wf 5843  ontowfo 5845  cfv 5847  (class class class)co 6604  fBascfbas 19653  filGencfg 19654  Filcfil 21559   FilMap cfm 21647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-fbas 19662  df-fg 19663  df-fil 21560  df-fm 21652
This theorem is referenced by:  fmfnfmlem4  21671
  Copyright terms: Public domain W3C validator