MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmptcof Structured version   Visualization version   GIF version

Theorem fmptcof 6358
Description: Version of fmptco 6357 where 𝜑 needn't be distinct from 𝑥. (Contributed by NM, 27-Dec-2014.)
Hypotheses
Ref Expression
fmptcof.1 (𝜑 → ∀𝑥𝐴 𝑅𝐵)
fmptcof.2 (𝜑𝐹 = (𝑥𝐴𝑅))
fmptcof.3 (𝜑𝐺 = (𝑦𝐵𝑆))
fmptcof.4 (𝑦 = 𝑅𝑆 = 𝑇)
Assertion
Ref Expression
fmptcof (𝜑 → (𝐺𝐹) = (𝑥𝐴𝑇))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑦,𝑅   𝑥,𝑆   𝑥,𝐴   𝑦,𝑇
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑦)   𝑅(𝑥)   𝑆(𝑦)   𝑇(𝑥)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem fmptcof
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmptcof.1 . . . . 5 (𝜑 → ∀𝑥𝐴 𝑅𝐵)
2 nfcsb1v 3534 . . . . . . 7 𝑥𝑧 / 𝑥𝑅
32nfel1 2775 . . . . . 6 𝑥𝑧 / 𝑥𝑅𝐵
4 csbeq1a 3527 . . . . . . 7 (𝑥 = 𝑧𝑅 = 𝑧 / 𝑥𝑅)
54eleq1d 2683 . . . . . 6 (𝑥 = 𝑧 → (𝑅𝐵𝑧 / 𝑥𝑅𝐵))
63, 5rspc 3292 . . . . 5 (𝑧𝐴 → (∀𝑥𝐴 𝑅𝐵𝑧 / 𝑥𝑅𝐵))
71, 6mpan9 486 . . . 4 ((𝜑𝑧𝐴) → 𝑧 / 𝑥𝑅𝐵)
8 fmptcof.2 . . . . 5 (𝜑𝐹 = (𝑥𝐴𝑅))
9 nfcv 2761 . . . . . 6 𝑧𝑅
109, 2, 4cbvmpt 4714 . . . . 5 (𝑥𝐴𝑅) = (𝑧𝐴𝑧 / 𝑥𝑅)
118, 10syl6eq 2671 . . . 4 (𝜑𝐹 = (𝑧𝐴𝑧 / 𝑥𝑅))
12 fmptcof.3 . . . . 5 (𝜑𝐺 = (𝑦𝐵𝑆))
13 nfcv 2761 . . . . . 6 𝑤𝑆
14 nfcsb1v 3534 . . . . . 6 𝑦𝑤 / 𝑦𝑆
15 csbeq1a 3527 . . . . . 6 (𝑦 = 𝑤𝑆 = 𝑤 / 𝑦𝑆)
1613, 14, 15cbvmpt 4714 . . . . 5 (𝑦𝐵𝑆) = (𝑤𝐵𝑤 / 𝑦𝑆)
1712, 16syl6eq 2671 . . . 4 (𝜑𝐺 = (𝑤𝐵𝑤 / 𝑦𝑆))
18 csbeq1 3521 . . . 4 (𝑤 = 𝑧 / 𝑥𝑅𝑤 / 𝑦𝑆 = 𝑧 / 𝑥𝑅 / 𝑦𝑆)
197, 11, 17, 18fmptco 6357 . . 3 (𝜑 → (𝐺𝐹) = (𝑧𝐴𝑧 / 𝑥𝑅 / 𝑦𝑆))
20 nfcv 2761 . . . 4 𝑧𝑅 / 𝑦𝑆
21 nfcv 2761 . . . . 5 𝑥𝑆
222, 21nfcsb 3536 . . . 4 𝑥𝑧 / 𝑥𝑅 / 𝑦𝑆
234csbeq1d 3525 . . . 4 (𝑥 = 𝑧𝑅 / 𝑦𝑆 = 𝑧 / 𝑥𝑅 / 𝑦𝑆)
2420, 22, 23cbvmpt 4714 . . 3 (𝑥𝐴𝑅 / 𝑦𝑆) = (𝑧𝐴𝑧 / 𝑥𝑅 / 𝑦𝑆)
2519, 24syl6eqr 2673 . 2 (𝜑 → (𝐺𝐹) = (𝑥𝐴𝑅 / 𝑦𝑆))
26 eqid 2621 . . . 4 𝐴 = 𝐴
27 nfcvd 2762 . . . . . 6 (𝑅𝐵𝑦𝑇)
28 fmptcof.4 . . . . . 6 (𝑦 = 𝑅𝑆 = 𝑇)
2927, 28csbiegf 3542 . . . . 5 (𝑅𝐵𝑅 / 𝑦𝑆 = 𝑇)
3029ralimi 2947 . . . 4 (∀𝑥𝐴 𝑅𝐵 → ∀𝑥𝐴 𝑅 / 𝑦𝑆 = 𝑇)
31 mpteq12 4701 . . . 4 ((𝐴 = 𝐴 ∧ ∀𝑥𝐴 𝑅 / 𝑦𝑆 = 𝑇) → (𝑥𝐴𝑅 / 𝑦𝑆) = (𝑥𝐴𝑇))
3226, 30, 31sylancr 694 . . 3 (∀𝑥𝐴 𝑅𝐵 → (𝑥𝐴𝑅 / 𝑦𝑆) = (𝑥𝐴𝑇))
331, 32syl 17 . 2 (𝜑 → (𝑥𝐴𝑅 / 𝑦𝑆) = (𝑥𝐴𝑇))
3425, 33eqtrd 2655 1 (𝜑 → (𝐺𝐹) = (𝑥𝐴𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1480  wcel 1987  wral 2907  csb 3518  cmpt 4678  ccom 5083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-fv 5860
This theorem is referenced by:  fmptcos  6359  yonedalem3b  16847  gsumcom2  18302  evl1sca  19626  cnmptk1  21403  cnmpt1k  21404  cnmptkk  21405  cncfmpt1f  22635  copco  22737  pcoass  22743  sincn  24115  coscn  24116  lgseisenlem3  25015  fcomptf  29318  eulerpartgbij  30233  cncfcompt2  39438
  Copyright terms: Public domain W3C validator