Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnodvds Structured version   Visualization version   GIF version

Theorem fmtnodvds 39792
Description: Any Fermat number divides a greater Fermat number minus 2. Corrolary of fmtnorec2 39791, see ProofWiki "Product of Sequence of Fermat Numbers plus 2/Corollary", 31-Jul-2021. (Contributed by AV, 1-Aug-2021.)
Assertion
Ref Expression
fmtnodvds ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → (FermatNo‘𝑁) ∥ ((FermatNo‘(𝑁 + 𝑀)) − 2))

Proof of Theorem fmtnodvds
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 471 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → 𝑁 ∈ ℕ0)
2 nn0nnaddcl 11171 . . . . 5 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → (𝑁 + 𝑀) ∈ ℕ)
3 nnm1nn0 11181 . . . . 5 ((𝑁 + 𝑀) ∈ ℕ → ((𝑁 + 𝑀) − 1) ∈ ℕ0)
42, 3syl 17 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → ((𝑁 + 𝑀) − 1) ∈ ℕ0)
5 1red 9911 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → 1 ∈ ℝ)
6 nnre 10874 . . . . . . 7 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
76adantl 480 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → 𝑀 ∈ ℝ)
8 nn0re 11148 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
98adantr 479 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → 𝑁 ∈ ℝ)
10 nnge1 10893 . . . . . . 7 (𝑀 ∈ ℕ → 1 ≤ 𝑀)
1110adantl 480 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → 1 ≤ 𝑀)
125, 7, 9, 11leadd2dd 10491 . . . . 5 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → (𝑁 + 1) ≤ (𝑁 + 𝑀))
13 readdcl 9875 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝑁 + 𝑀) ∈ ℝ)
148, 6, 13syl2an 492 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → (𝑁 + 𝑀) ∈ ℝ)
15 leaddsub 10353 . . . . . 6 ((𝑁 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑁 + 𝑀) ∈ ℝ) → ((𝑁 + 1) ≤ (𝑁 + 𝑀) ↔ 𝑁 ≤ ((𝑁 + 𝑀) − 1)))
169, 5, 14, 15syl3anc 1317 . . . . 5 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → ((𝑁 + 1) ≤ (𝑁 + 𝑀) ↔ 𝑁 ≤ ((𝑁 + 𝑀) − 1)))
1712, 16mpbid 220 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → 𝑁 ≤ ((𝑁 + 𝑀) − 1))
18 elfz2nn0 12255 . . . 4 (𝑁 ∈ (0...((𝑁 + 𝑀) − 1)) ↔ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 𝑀) − 1) ∈ ℕ0𝑁 ≤ ((𝑁 + 𝑀) − 1)))
191, 4, 17, 18syl3anbrc 1238 . . 3 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → 𝑁 ∈ (0...((𝑁 + 𝑀) − 1)))
20 fzfid 12589 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → (0...((𝑁 + 𝑀) − 1)) ∈ Fin)
21 fz0ssnn0 12259 . . . . 5 (0...((𝑁 + 𝑀) − 1)) ⊆ ℕ0
2221a1i 11 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → (0...((𝑁 + 𝑀) − 1)) ⊆ ℕ0)
23 2nn0 11156 . . . . . . . . . 10 2 ∈ ℕ0
2423a1i 11 . . . . . . . . 9 (𝑛 ∈ ℕ0 → 2 ∈ ℕ0)
25 id 22 . . . . . . . . . 10 (𝑛 ∈ ℕ0𝑛 ∈ ℕ0)
2624, 25nn0expcld 12848 . . . . . . . . 9 (𝑛 ∈ ℕ0 → (2↑𝑛) ∈ ℕ0)
2724, 26nn0expcld 12848 . . . . . . . 8 (𝑛 ∈ ℕ0 → (2↑(2↑𝑛)) ∈ ℕ0)
2827nn0zd 11312 . . . . . . 7 (𝑛 ∈ ℕ0 → (2↑(2↑𝑛)) ∈ ℤ)
2928peano2zd 11317 . . . . . 6 (𝑛 ∈ ℕ0 → ((2↑(2↑𝑛)) + 1) ∈ ℤ)
3029adantl 480 . . . . 5 (((𝑁 ∈ ℕ0𝑀 ∈ ℕ) ∧ 𝑛 ∈ ℕ0) → ((2↑(2↑𝑛)) + 1) ∈ ℤ)
31 df-fmtno 39776 . . . . 5 FermatNo = (𝑛 ∈ ℕ0 ↦ ((2↑(2↑𝑛)) + 1))
3230, 31fmptd 6277 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → FermatNo:ℕ0⟶ℤ)
3320, 22, 32fprodfvdvdsd 14842 . . 3 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → ∀𝑛 ∈ (0...((𝑁 + 𝑀) − 1))(FermatNo‘𝑛) ∥ ∏𝑘 ∈ (0...((𝑁 + 𝑀) − 1))(FermatNo‘𝑘))
34 fveq2 6088 . . . . 5 (𝑛 = 𝑁 → (FermatNo‘𝑛) = (FermatNo‘𝑁))
3534breq1d 4587 . . . 4 (𝑛 = 𝑁 → ((FermatNo‘𝑛) ∥ ∏𝑘 ∈ (0...((𝑁 + 𝑀) − 1))(FermatNo‘𝑘) ↔ (FermatNo‘𝑁) ∥ ∏𝑘 ∈ (0...((𝑁 + 𝑀) − 1))(FermatNo‘𝑘)))
3635rspcv 3277 . . 3 (𝑁 ∈ (0...((𝑁 + 𝑀) − 1)) → (∀𝑛 ∈ (0...((𝑁 + 𝑀) − 1))(FermatNo‘𝑛) ∥ ∏𝑘 ∈ (0...((𝑁 + 𝑀) − 1))(FermatNo‘𝑘) → (FermatNo‘𝑁) ∥ ∏𝑘 ∈ (0...((𝑁 + 𝑀) − 1))(FermatNo‘𝑘)))
3719, 33, 36sylc 62 . 2 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → (FermatNo‘𝑁) ∥ ∏𝑘 ∈ (0...((𝑁 + 𝑀) − 1))(FermatNo‘𝑘))
38 elfznn0 12257 . . . . . . 7 (𝑘 ∈ (0...((𝑁 + 𝑀) − 1)) → 𝑘 ∈ ℕ0)
3938adantl 480 . . . . . 6 (((𝑁 ∈ ℕ0𝑀 ∈ ℕ) ∧ 𝑘 ∈ (0...((𝑁 + 𝑀) − 1))) → 𝑘 ∈ ℕ0)
40 fmtnonn 39779 . . . . . 6 (𝑘 ∈ ℕ0 → (FermatNo‘𝑘) ∈ ℕ)
4139, 40syl 17 . . . . 5 (((𝑁 ∈ ℕ0𝑀 ∈ ℕ) ∧ 𝑘 ∈ (0...((𝑁 + 𝑀) − 1))) → (FermatNo‘𝑘) ∈ ℕ)
4241nncnd 10883 . . . 4 (((𝑁 ∈ ℕ0𝑀 ∈ ℕ) ∧ 𝑘 ∈ (0...((𝑁 + 𝑀) − 1))) → (FermatNo‘𝑘) ∈ ℂ)
4320, 42fprodcl 14467 . . 3 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → ∏𝑘 ∈ (0...((𝑁 + 𝑀) − 1))(FermatNo‘𝑘) ∈ ℂ)
44 2cnd 10940 . . 3 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → 2 ∈ ℂ)
45 nn0cn 11149 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
46 nncn 10875 . . . . . . . 8 (𝑀 ∈ ℕ → 𝑀 ∈ ℂ)
47 addcl 9874 . . . . . . . 8 ((𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝑁 + 𝑀) ∈ ℂ)
4845, 46, 47syl2an 492 . . . . . . 7 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → (𝑁 + 𝑀) ∈ ℂ)
49 npcan1 10306 . . . . . . 7 ((𝑁 + 𝑀) ∈ ℂ → (((𝑁 + 𝑀) − 1) + 1) = (𝑁 + 𝑀))
5048, 49syl 17 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → (((𝑁 + 𝑀) − 1) + 1) = (𝑁 + 𝑀))
5150eqcomd 2615 . . . . 5 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → (𝑁 + 𝑀) = (((𝑁 + 𝑀) − 1) + 1))
5251fveq2d 6092 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → (FermatNo‘(𝑁 + 𝑀)) = (FermatNo‘(((𝑁 + 𝑀) − 1) + 1)))
53 fmtnorec2 39791 . . . . 5 (((𝑁 + 𝑀) − 1) ∈ ℕ0 → (FermatNo‘(((𝑁 + 𝑀) − 1) + 1)) = (∏𝑘 ∈ (0...((𝑁 + 𝑀) − 1))(FermatNo‘𝑘) + 2))
544, 53syl 17 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → (FermatNo‘(((𝑁 + 𝑀) − 1) + 1)) = (∏𝑘 ∈ (0...((𝑁 + 𝑀) − 1))(FermatNo‘𝑘) + 2))
5552, 54eqtrd 2643 . . 3 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → (FermatNo‘(𝑁 + 𝑀)) = (∏𝑘 ∈ (0...((𝑁 + 𝑀) − 1))(FermatNo‘𝑘) + 2))
5643, 44, 55mvrraddd 10296 . 2 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → ((FermatNo‘(𝑁 + 𝑀)) − 2) = ∏𝑘 ∈ (0...((𝑁 + 𝑀) − 1))(FermatNo‘𝑘))
5737, 56breqtrrd 4605 1 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ) → (FermatNo‘𝑁) ∥ ((FermatNo‘(𝑁 + 𝑀)) − 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382   = wceq 1474  wcel 1976  wral 2895  wss 3539   class class class wbr 4577  cfv 5790  (class class class)co 6527  cc 9790  cr 9791  0cc0 9792  1c1 9793   + caddc 9795  cle 9931  cmin 10117  cn 10867  2c2 10917  0cn0 11139  cz 11210  ...cfz 12152  cexp 12677  cprod 14420  cdvds 14767  FermatNocfmtno 39775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-inf2 8398  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-oadd 7428  df-er 7606  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-sup 8208  df-oi 8275  df-card 8625  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10534  df-nn 10868  df-2 10926  df-3 10927  df-4 10928  df-5 10929  df-n0 11140  df-z 11211  df-uz 11520  df-rp 11665  df-fz 12153  df-fzo 12290  df-seq 12619  df-exp 12678  df-hash 12935  df-cj 13633  df-re 13634  df-im 13635  df-sqrt 13769  df-abs 13770  df-clim 14013  df-prod 14421  df-dvds 14768  df-fmtno 39776
This theorem is referenced by:  goldbachthlem1  39793
  Copyright terms: Public domain W3C validator