Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnofac2lem Structured version   Visualization version   GIF version

Theorem fmtnofac2lem 41805
Description: Lemma for fmtnofac2 41806 (Induction step). (Contributed by AV, 30-Jul-2021.)
Assertion
Ref Expression
fmtnofac2lem ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → ((((𝑁 ∈ (ℤ‘2) ∧ 𝑦 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) ∧ ((𝑁 ∈ (ℤ‘2) ∧ 𝑧 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1))) → ((𝑁 ∈ (ℤ‘2) ∧ (𝑦 · 𝑧) ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
Distinct variable group:   𝑘,𝑁,𝑦,𝑧

Proof of Theorem fmtnofac2lem
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluzelz 11735 . . . . . 6 (𝑦 ∈ (ℤ‘2) → 𝑦 ∈ ℤ)
21adantr 480 . . . . 5 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → 𝑦 ∈ ℤ)
3 eluzelz 11735 . . . . . 6 (𝑧 ∈ (ℤ‘2) → 𝑧 ∈ ℤ)
43adantl 481 . . . . 5 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → 𝑧 ∈ ℤ)
5 eluzge2nn0 11765 . . . . . 6 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ0)
6 fmtnonn 41768 . . . . . . 7 (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) ∈ ℕ)
76nnzd 11519 . . . . . 6 (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) ∈ ℤ)
85, 7syl 17 . . . . 5 (𝑁 ∈ (ℤ‘2) → (FermatNo‘𝑁) ∈ ℤ)
9 muldvds2 15054 . . . . 5 ((𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ∧ (FermatNo‘𝑁) ∈ ℤ) → ((𝑦 · 𝑧) ∥ (FermatNo‘𝑁) → 𝑧 ∥ (FermatNo‘𝑁)))
102, 4, 8, 9syl2an3an 1426 . . . 4 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑦 · 𝑧) ∥ (FermatNo‘𝑁) → 𝑧 ∥ (FermatNo‘𝑁)))
11 muldvds1 15053 . . . . . 6 ((𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ∧ (FermatNo‘𝑁) ∈ ℤ) → ((𝑦 · 𝑧) ∥ (FermatNo‘𝑁) → 𝑦 ∥ (FermatNo‘𝑁)))
122, 4, 8, 11syl2an3an 1426 . . . . 5 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑦 · 𝑧) ∥ (FermatNo‘𝑁) → 𝑦 ∥ (FermatNo‘𝑁)))
13 pm2.27 42 . . . . . . . 8 ((𝑁 ∈ (ℤ‘2) ∧ 𝑦 ∥ (FermatNo‘𝑁)) → (((𝑁 ∈ (ℤ‘2) ∧ 𝑦 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) → ∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
1413ad2ant2lr 799 . . . . . . 7 ((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝑦 ∥ (FermatNo‘𝑁) ∧ 𝑧 ∥ (FermatNo‘𝑁))) → (((𝑁 ∈ (ℤ‘2) ∧ 𝑦 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) → ∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
15 pm2.27 42 . . . . . . . 8 ((𝑁 ∈ (ℤ‘2) ∧ 𝑧 ∥ (FermatNo‘𝑁)) → (((𝑁 ∈ (ℤ‘2) ∧ 𝑧 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) → ∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
1615ad2ant2l 797 . . . . . . 7 ((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝑦 ∥ (FermatNo‘𝑁) ∧ 𝑧 ∥ (FermatNo‘𝑁))) → (((𝑁 ∈ (ℤ‘2) ∧ 𝑧 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) → ∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
17 oveq1 6697 . . . . . . . . . . . . 13 (𝑘 = 𝑚 → (𝑘 · (2↑(𝑁 + 2))) = (𝑚 · (2↑(𝑁 + 2))))
1817oveq1d 6705 . . . . . . . . . . . 12 (𝑘 = 𝑚 → ((𝑘 · (2↑(𝑁 + 2))) + 1) = ((𝑚 · (2↑(𝑁 + 2))) + 1))
1918eqeq2d 2661 . . . . . . . . . . 11 (𝑘 = 𝑚 → (𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ 𝑦 = ((𝑚 · (2↑(𝑁 + 2))) + 1)))
2019cbvrexv 3202 . . . . . . . . . 10 (∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ ∃𝑚 ∈ ℕ0 𝑦 = ((𝑚 · (2↑(𝑁 + 2))) + 1))
21 oveq1 6697 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑛 → (𝑘 · (2↑(𝑁 + 2))) = (𝑛 · (2↑(𝑁 + 2))))
2221oveq1d 6705 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → ((𝑘 · (2↑(𝑁 + 2))) + 1) = ((𝑛 · (2↑(𝑁 + 2))) + 1))
2322eqeq2d 2661 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → (𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ 𝑧 = ((𝑛 · (2↑(𝑁 + 2))) + 1)))
2423cbvrexv 3202 . . . . . . . . . . . . 13 (∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ ∃𝑛 ∈ ℕ0 𝑧 = ((𝑛 · (2↑(𝑁 + 2))) + 1))
25 simpl 472 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ0) → 𝑚 ∈ ℕ0)
2625adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → 𝑚 ∈ ℕ0)
27 2nn0 11347 . . . . . . . . . . . . . . . . . . . . . . . . . 26 2 ∈ ℕ0
2827a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℕ0)
295, 28nn0addcld 11393 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ (ℤ‘2) → (𝑁 + 2) ∈ ℕ0)
3028, 29nn0expcld 13071 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 + 2)) ∈ ℕ0)
3130adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → (2↑(𝑁 + 2)) ∈ ℕ0)
3226, 31nn0mulcld 11394 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → (𝑚 · (2↑(𝑁 + 2))) ∈ ℕ0)
33 simpr 476 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
3433adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → 𝑛 ∈ ℕ0)
3532, 34nn0mulcld 11394 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → ((𝑚 · (2↑(𝑁 + 2))) · 𝑛) ∈ ℕ0)
36 nn0addcl 11366 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ0) → (𝑚 + 𝑛) ∈ ℕ0)
3736adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → (𝑚 + 𝑛) ∈ ℕ0)
3835, 37nn0addcld 11393 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → (((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) ∈ ℕ0)
39 oveq1 6697 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = (((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) → (𝑘 · (2↑(𝑁 + 2))) = ((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) · (2↑(𝑁 + 2))))
4039oveq1d 6705 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = (((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) → ((𝑘 · (2↑(𝑁 + 2))) + 1) = (((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) · (2↑(𝑁 + 2))) + 1))
4140eqeq2d 2661 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = (((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) → ((((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) · (2↑(𝑁 + 2))) + 1) = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ (((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) · (2↑(𝑁 + 2))) + 1) = (((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) · (2↑(𝑁 + 2))) + 1)))
4241adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ 𝑘 = (((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛))) → ((((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) · (2↑(𝑁 + 2))) + 1) = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ (((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) · (2↑(𝑁 + 2))) + 1) = (((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) · (2↑(𝑁 + 2))) + 1)))
43 eqidd 2652 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → (((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) · (2↑(𝑁 + 2))) + 1) = (((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) · (2↑(𝑁 + 2))) + 1))
4438, 42, 43rspcedvd 3348 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → ∃𝑘 ∈ ℕ0 (((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) · (2↑(𝑁 + 2))) + 1) = ((𝑘 · (2↑(𝑁 + 2))) + 1))
45 nn0cn 11340 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑚 ∈ ℕ0𝑚 ∈ ℂ)
4645adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ0) → 𝑚 ∈ ℂ)
4746adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → 𝑚 ∈ ℂ)
4830nn0cnd 11391 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 + 2)) ∈ ℂ)
4948adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → (2↑(𝑁 + 2)) ∈ ℂ)
5047, 49mulcld 10098 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → (𝑚 · (2↑(𝑁 + 2))) ∈ ℂ)
5133nn0cnd 11391 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ0) → 𝑛 ∈ ℂ)
5251adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → 𝑛 ∈ ℂ)
5352, 49mulcld 10098 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → (𝑛 · (2↑(𝑁 + 2))) ∈ ℂ)
5450, 53jca 553 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → ((𝑚 · (2↑(𝑁 + 2))) ∈ ℂ ∧ (𝑛 · (2↑(𝑁 + 2))) ∈ ℂ))
5554adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → ((𝑚 · (2↑(𝑁 + 2))) ∈ ℂ ∧ (𝑛 · (2↑(𝑁 + 2))) ∈ ℂ))
56 muladd11r 10287 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑚 · (2↑(𝑁 + 2))) ∈ ℂ ∧ (𝑛 · (2↑(𝑁 + 2))) ∈ ℂ) → (((𝑚 · (2↑(𝑁 + 2))) + 1) · ((𝑛 · (2↑(𝑁 + 2))) + 1)) = ((((𝑚 · (2↑(𝑁 + 2))) · (𝑛 · (2↑(𝑁 + 2)))) + ((𝑚 · (2↑(𝑁 + 2))) + (𝑛 · (2↑(𝑁 + 2))))) + 1))
5755, 56syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (((𝑚 · (2↑(𝑁 + 2))) + 1) · ((𝑛 · (2↑(𝑁 + 2))) + 1)) = ((((𝑚 · (2↑(𝑁 + 2))) · (𝑛 · (2↑(𝑁 + 2)))) + ((𝑚 · (2↑(𝑁 + 2))) + (𝑛 · (2↑(𝑁 + 2))))) + 1))
5825nn0cnd 11391 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ0) → 𝑚 ∈ ℂ)
5958adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → 𝑚 ∈ ℂ)
6059, 52, 493jca 1261 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ∧ (2↑(𝑁 + 2)) ∈ ℂ))
6160adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ∧ (2↑(𝑁 + 2)) ∈ ℂ))
62 adddir 10069 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ∧ (2↑(𝑁 + 2)) ∈ ℂ) → ((𝑚 + 𝑛) · (2↑(𝑁 + 2))) = ((𝑚 · (2↑(𝑁 + 2))) + (𝑛 · (2↑(𝑁 + 2)))))
6361, 62syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → ((𝑚 + 𝑛) · (2↑(𝑁 + 2))) = ((𝑚 · (2↑(𝑁 + 2))) + (𝑛 · (2↑(𝑁 + 2)))))
6463eqcomd 2657 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → ((𝑚 · (2↑(𝑁 + 2))) + (𝑛 · (2↑(𝑁 + 2)))) = ((𝑚 + 𝑛) · (2↑(𝑁 + 2))))
6564oveq2d 6706 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → ((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) · (2↑(𝑁 + 2))) + ((𝑚 · (2↑(𝑁 + 2))) + (𝑛 · (2↑(𝑁 + 2))))) = ((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) · (2↑(𝑁 + 2))) + ((𝑚 + 𝑛) · (2↑(𝑁 + 2)))))
6650adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (𝑚 · (2↑(𝑁 + 2))) ∈ ℂ)
6752adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → 𝑛 ∈ ℂ)
6849adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (2↑(𝑁 + 2)) ∈ ℂ)
6966, 67, 68mulassd 10101 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (((𝑚 · (2↑(𝑁 + 2))) · 𝑛) · (2↑(𝑁 + 2))) = ((𝑚 · (2↑(𝑁 + 2))) · (𝑛 · (2↑(𝑁 + 2)))))
7069eqcomd 2657 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → ((𝑚 · (2↑(𝑁 + 2))) · (𝑛 · (2↑(𝑁 + 2)))) = (((𝑚 · (2↑(𝑁 + 2))) · 𝑛) · (2↑(𝑁 + 2))))
7170oveq1d 6705 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (((𝑚 · (2↑(𝑁 + 2))) · (𝑛 · (2↑(𝑁 + 2)))) + ((𝑚 · (2↑(𝑁 + 2))) + (𝑛 · (2↑(𝑁 + 2))))) = ((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) · (2↑(𝑁 + 2))) + ((𝑚 · (2↑(𝑁 + 2))) + (𝑛 · (2↑(𝑁 + 2))))))
7250, 52mulcld 10098 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → ((𝑚 · (2↑(𝑁 + 2))) · 𝑛) ∈ ℂ)
7336nn0cnd 11391 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ0) → (𝑚 + 𝑛) ∈ ℂ)
7473adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → (𝑚 + 𝑛) ∈ ℂ)
7572, 74, 493jca 1261 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → (((𝑚 · (2↑(𝑁 + 2))) · 𝑛) ∈ ℂ ∧ (𝑚 + 𝑛) ∈ ℂ ∧ (2↑(𝑁 + 2)) ∈ ℂ))
7675adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (((𝑚 · (2↑(𝑁 + 2))) · 𝑛) ∈ ℂ ∧ (𝑚 + 𝑛) ∈ ℂ ∧ (2↑(𝑁 + 2)) ∈ ℂ))
77 adddir 10069 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) ∈ ℂ ∧ (𝑚 + 𝑛) ∈ ℂ ∧ (2↑(𝑁 + 2)) ∈ ℂ) → ((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) · (2↑(𝑁 + 2))) = ((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) · (2↑(𝑁 + 2))) + ((𝑚 + 𝑛) · (2↑(𝑁 + 2)))))
7876, 77syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → ((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) · (2↑(𝑁 + 2))) = ((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) · (2↑(𝑁 + 2))) + ((𝑚 + 𝑛) · (2↑(𝑁 + 2)))))
7965, 71, 783eqtr4d 2695 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (((𝑚 · (2↑(𝑁 + 2))) · (𝑛 · (2↑(𝑁 + 2)))) + ((𝑚 · (2↑(𝑁 + 2))) + (𝑛 · (2↑(𝑁 + 2))))) = ((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) · (2↑(𝑁 + 2))))
8079oveq1d 6705 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → ((((𝑚 · (2↑(𝑁 + 2))) · (𝑛 · (2↑(𝑁 + 2)))) + ((𝑚 · (2↑(𝑁 + 2))) + (𝑛 · (2↑(𝑁 + 2))))) + 1) = (((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) · (2↑(𝑁 + 2))) + 1))
8157, 80eqtrd 2685 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (((𝑚 · (2↑(𝑁 + 2))) + 1) · ((𝑛 · (2↑(𝑁 + 2))) + 1)) = (((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) · (2↑(𝑁 + 2))) + 1))
8281eqeq1d 2653 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → ((((𝑚 · (2↑(𝑁 + 2))) + 1) · ((𝑛 · (2↑(𝑁 + 2))) + 1)) = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ (((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) · (2↑(𝑁 + 2))) + 1) = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
8382rexbidva 3078 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → (∃𝑘 ∈ ℕ0 (((𝑚 · (2↑(𝑁 + 2))) + 1) · ((𝑛 · (2↑(𝑁 + 2))) + 1)) = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ ∃𝑘 ∈ ℕ0 (((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) · (2↑(𝑁 + 2))) + 1) = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
8444, 83mpbird 247 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → ∃𝑘 ∈ ℕ0 (((𝑚 · (2↑(𝑁 + 2))) + 1) · ((𝑛 · (2↑(𝑁 + 2))) + 1)) = ((𝑘 · (2↑(𝑁 + 2))) + 1))
8584adantll 750 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → ∃𝑘 ∈ ℕ0 (((𝑚 · (2↑(𝑁 + 2))) + 1) · ((𝑛 · (2↑(𝑁 + 2))) + 1)) = ((𝑘 · (2↑(𝑁 + 2))) + 1))
86 oveq12 6699 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 = ((𝑚 · (2↑(𝑁 + 2))) + 1) ∧ 𝑧 = ((𝑛 · (2↑(𝑁 + 2))) + 1)) → (𝑦 · 𝑧) = (((𝑚 · (2↑(𝑁 + 2))) + 1) · ((𝑛 · (2↑(𝑁 + 2))) + 1)))
8786ancoms 468 . . . . . . . . . . . . . . . . . . 19 ((𝑧 = ((𝑛 · (2↑(𝑁 + 2))) + 1) ∧ 𝑦 = ((𝑚 · (2↑(𝑁 + 2))) + 1)) → (𝑦 · 𝑧) = (((𝑚 · (2↑(𝑁 + 2))) + 1) · ((𝑛 · (2↑(𝑁 + 2))) + 1)))
8887eqeq1d 2653 . . . . . . . . . . . . . . . . . 18 ((𝑧 = ((𝑛 · (2↑(𝑁 + 2))) + 1) ∧ 𝑦 = ((𝑚 · (2↑(𝑁 + 2))) + 1)) → ((𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ (((𝑚 · (2↑(𝑁 + 2))) + 1) · ((𝑛 · (2↑(𝑁 + 2))) + 1)) = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
8988rexbidv 3081 . . . . . . . . . . . . . . . . 17 ((𝑧 = ((𝑛 · (2↑(𝑁 + 2))) + 1) ∧ 𝑦 = ((𝑚 · (2↑(𝑁 + 2))) + 1)) → (∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ ∃𝑘 ∈ ℕ0 (((𝑚 · (2↑(𝑁 + 2))) + 1) · ((𝑛 · (2↑(𝑁 + 2))) + 1)) = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
9085, 89syl5ibrcom 237 . . . . . . . . . . . . . . . 16 ((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → ((𝑧 = ((𝑛 · (2↑(𝑁 + 2))) + 1) ∧ 𝑦 = ((𝑚 · (2↑(𝑁 + 2))) + 1)) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
9190expd 451 . . . . . . . . . . . . . . 15 ((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → (𝑧 = ((𝑛 · (2↑(𝑁 + 2))) + 1) → (𝑦 = ((𝑚 · (2↑(𝑁 + 2))) + 1) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
9291anassrs 681 . . . . . . . . . . . . . 14 (((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑁 ∈ (ℤ‘2)) ∧ 𝑚 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑧 = ((𝑛 · (2↑(𝑁 + 2))) + 1) → (𝑦 = ((𝑚 · (2↑(𝑁 + 2))) + 1) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
9392rexlimdva 3060 . . . . . . . . . . . . 13 ((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑁 ∈ (ℤ‘2)) ∧ 𝑚 ∈ ℕ0) → (∃𝑛 ∈ ℕ0 𝑧 = ((𝑛 · (2↑(𝑁 + 2))) + 1) → (𝑦 = ((𝑚 · (2↑(𝑁 + 2))) + 1) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
9424, 93syl5bi 232 . . . . . . . . . . . 12 ((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑁 ∈ (ℤ‘2)) ∧ 𝑚 ∈ ℕ0) → (∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1) → (𝑦 = ((𝑚 · (2↑(𝑁 + 2))) + 1) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
9594com23 86 . . . . . . . . . . 11 ((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑁 ∈ (ℤ‘2)) ∧ 𝑚 ∈ ℕ0) → (𝑦 = ((𝑚 · (2↑(𝑁 + 2))) + 1) → (∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
9695rexlimdva 3060 . . . . . . . . . 10 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑁 ∈ (ℤ‘2)) → (∃𝑚 ∈ ℕ0 𝑦 = ((𝑚 · (2↑(𝑁 + 2))) + 1) → (∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
9720, 96syl5bi 232 . . . . . . . . 9 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑁 ∈ (ℤ‘2)) → (∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1) → (∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
9897impd 446 . . . . . . . 8 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑁 ∈ (ℤ‘2)) → ((∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ∧ ∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
9998adantr 480 . . . . . . 7 ((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝑦 ∥ (FermatNo‘𝑁) ∧ 𝑧 ∥ (FermatNo‘𝑁))) → ((∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ∧ ∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
10014, 16, 99syl2and 499 . . . . . 6 ((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝑦 ∥ (FermatNo‘𝑁) ∧ 𝑧 ∥ (FermatNo‘𝑁))) → ((((𝑁 ∈ (ℤ‘2) ∧ 𝑦 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) ∧ ((𝑁 ∈ (ℤ‘2) ∧ 𝑧 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1))) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
101100exp32 630 . . . . 5 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑦 ∥ (FermatNo‘𝑁) → (𝑧 ∥ (FermatNo‘𝑁) → ((((𝑁 ∈ (ℤ‘2) ∧ 𝑦 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) ∧ ((𝑁 ∈ (ℤ‘2) ∧ 𝑧 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1))) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1)))))
10212, 101syld 47 . . . 4 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑦 · 𝑧) ∥ (FermatNo‘𝑁) → (𝑧 ∥ (FermatNo‘𝑁) → ((((𝑁 ∈ (ℤ‘2) ∧ 𝑦 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) ∧ ((𝑁 ∈ (ℤ‘2) ∧ 𝑧 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1))) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1)))))
10310, 102mpdd 43 . . 3 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑦 · 𝑧) ∥ (FermatNo‘𝑁) → ((((𝑁 ∈ (ℤ‘2) ∧ 𝑦 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) ∧ ((𝑁 ∈ (ℤ‘2) ∧ 𝑧 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1))) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
104103expimpd 628 . 2 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → ((𝑁 ∈ (ℤ‘2) ∧ (𝑦 · 𝑧) ∥ (FermatNo‘𝑁)) → ((((𝑁 ∈ (ℤ‘2) ∧ 𝑦 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) ∧ ((𝑁 ∈ (ℤ‘2) ∧ 𝑧 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1))) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
105104com23 86 1 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → ((((𝑁 ∈ (ℤ‘2) ∧ 𝑦 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) ∧ ((𝑁 ∈ (ℤ‘2) ∧ 𝑧 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1))) → ((𝑁 ∈ (ℤ‘2) ∧ (𝑦 · 𝑧) ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wrex 2942   class class class wbr 4685  cfv 5926  (class class class)co 6690  cc 9972  1c1 9975   + caddc 9977   · cmul 9979  2c2 11108  0cn0 11330  cz 11415  cuz 11725  cexp 12900  cdvds 15027  FermatNocfmtno 41764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-seq 12842  df-exp 12901  df-dvds 15028  df-fmtno 41765
This theorem is referenced by:  fmtnofac2  41806
  Copyright terms: Public domain W3C validator