Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnofac2lem Structured version   Visualization version   GIF version

Theorem fmtnofac2lem 40767
Description: Lemma for fmtnofac2 40768 (Induction step). (Contributed by AV, 30-Jul-2021.)
Assertion
Ref Expression
fmtnofac2lem ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → ((((𝑁 ∈ (ℤ‘2) ∧ 𝑦 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) ∧ ((𝑁 ∈ (ℤ‘2) ∧ 𝑧 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1))) → ((𝑁 ∈ (ℤ‘2) ∧ (𝑦 · 𝑧) ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
Distinct variable group:   𝑘,𝑁,𝑦,𝑧

Proof of Theorem fmtnofac2lem
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluzelz 11641 . . . . . 6 (𝑦 ∈ (ℤ‘2) → 𝑦 ∈ ℤ)
21adantr 481 . . . . 5 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → 𝑦 ∈ ℤ)
3 eluzelz 11641 . . . . . 6 (𝑧 ∈ (ℤ‘2) → 𝑧 ∈ ℤ)
43adantl 482 . . . . 5 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → 𝑧 ∈ ℤ)
5 eluzge2nn0 11671 . . . . . 6 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ0)
6 fmtnonn 40730 . . . . . . 7 (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) ∈ ℕ)
76nnzd 11425 . . . . . 6 (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) ∈ ℤ)
85, 7syl 17 . . . . 5 (𝑁 ∈ (ℤ‘2) → (FermatNo‘𝑁) ∈ ℤ)
9 muldvds2 14926 . . . . 5 ((𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ∧ (FermatNo‘𝑁) ∈ ℤ) → ((𝑦 · 𝑧) ∥ (FermatNo‘𝑁) → 𝑧 ∥ (FermatNo‘𝑁)))
102, 4, 8, 9syl2an3an 1383 . . . 4 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑦 · 𝑧) ∥ (FermatNo‘𝑁) → 𝑧 ∥ (FermatNo‘𝑁)))
11 muldvds1 14925 . . . . . 6 ((𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ∧ (FermatNo‘𝑁) ∈ ℤ) → ((𝑦 · 𝑧) ∥ (FermatNo‘𝑁) → 𝑦 ∥ (FermatNo‘𝑁)))
122, 4, 8, 11syl2an3an 1383 . . . . 5 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑦 · 𝑧) ∥ (FermatNo‘𝑁) → 𝑦 ∥ (FermatNo‘𝑁)))
13 pm2.27 42 . . . . . . . 8 ((𝑁 ∈ (ℤ‘2) ∧ 𝑦 ∥ (FermatNo‘𝑁)) → (((𝑁 ∈ (ℤ‘2) ∧ 𝑦 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) → ∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
1413ad2ant2lr 783 . . . . . . 7 ((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝑦 ∥ (FermatNo‘𝑁) ∧ 𝑧 ∥ (FermatNo‘𝑁))) → (((𝑁 ∈ (ℤ‘2) ∧ 𝑦 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) → ∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
15 pm2.27 42 . . . . . . . 8 ((𝑁 ∈ (ℤ‘2) ∧ 𝑧 ∥ (FermatNo‘𝑁)) → (((𝑁 ∈ (ℤ‘2) ∧ 𝑧 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) → ∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
1615ad2ant2l 781 . . . . . . 7 ((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝑦 ∥ (FermatNo‘𝑁) ∧ 𝑧 ∥ (FermatNo‘𝑁))) → (((𝑁 ∈ (ℤ‘2) ∧ 𝑧 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) → ∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
17 oveq1 6612 . . . . . . . . . . . . 13 (𝑘 = 𝑚 → (𝑘 · (2↑(𝑁 + 2))) = (𝑚 · (2↑(𝑁 + 2))))
1817oveq1d 6620 . . . . . . . . . . . 12 (𝑘 = 𝑚 → ((𝑘 · (2↑(𝑁 + 2))) + 1) = ((𝑚 · (2↑(𝑁 + 2))) + 1))
1918eqeq2d 2636 . . . . . . . . . . 11 (𝑘 = 𝑚 → (𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ 𝑦 = ((𝑚 · (2↑(𝑁 + 2))) + 1)))
2019cbvrexv 3165 . . . . . . . . . 10 (∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ ∃𝑚 ∈ ℕ0 𝑦 = ((𝑚 · (2↑(𝑁 + 2))) + 1))
21 oveq1 6612 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑛 → (𝑘 · (2↑(𝑁 + 2))) = (𝑛 · (2↑(𝑁 + 2))))
2221oveq1d 6620 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → ((𝑘 · (2↑(𝑁 + 2))) + 1) = ((𝑛 · (2↑(𝑁 + 2))) + 1))
2322eqeq2d 2636 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → (𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ 𝑧 = ((𝑛 · (2↑(𝑁 + 2))) + 1)))
2423cbvrexv 3165 . . . . . . . . . . . . 13 (∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ ∃𝑛 ∈ ℕ0 𝑧 = ((𝑛 · (2↑(𝑁 + 2))) + 1))
25 simpl 473 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ0) → 𝑚 ∈ ℕ0)
2625adantl 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → 𝑚 ∈ ℕ0)
27 2nn0 11254 . . . . . . . . . . . . . . . . . . . . . . . . . 26 2 ∈ ℕ0
2827a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℕ0)
295, 28nn0addcld 11300 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ (ℤ‘2) → (𝑁 + 2) ∈ ℕ0)
3028, 29nn0expcld 12968 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 + 2)) ∈ ℕ0)
3130adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → (2↑(𝑁 + 2)) ∈ ℕ0)
3226, 31nn0mulcld 11301 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → (𝑚 · (2↑(𝑁 + 2))) ∈ ℕ0)
33 simpr 477 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
3433adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → 𝑛 ∈ ℕ0)
3532, 34nn0mulcld 11301 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → ((𝑚 · (2↑(𝑁 + 2))) · 𝑛) ∈ ℕ0)
36 nn0addcl 11273 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ0) → (𝑚 + 𝑛) ∈ ℕ0)
3736adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → (𝑚 + 𝑛) ∈ ℕ0)
3835, 37nn0addcld 11300 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → (((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) ∈ ℕ0)
39 oveq1 6612 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = (((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) → (𝑘 · (2↑(𝑁 + 2))) = ((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) · (2↑(𝑁 + 2))))
4039oveq1d 6620 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = (((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) → ((𝑘 · (2↑(𝑁 + 2))) + 1) = (((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) · (2↑(𝑁 + 2))) + 1))
4140eqeq2d 2636 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = (((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) → ((((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) · (2↑(𝑁 + 2))) + 1) = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ (((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) · (2↑(𝑁 + 2))) + 1) = (((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) · (2↑(𝑁 + 2))) + 1)))
4241adantl 482 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ 𝑘 = (((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛))) → ((((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) · (2↑(𝑁 + 2))) + 1) = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ (((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) · (2↑(𝑁 + 2))) + 1) = (((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) · (2↑(𝑁 + 2))) + 1)))
43 eqidd 2627 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → (((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) · (2↑(𝑁 + 2))) + 1) = (((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) · (2↑(𝑁 + 2))) + 1))
4438, 42, 43rspcedvd 3307 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → ∃𝑘 ∈ ℕ0 (((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) · (2↑(𝑁 + 2))) + 1) = ((𝑘 · (2↑(𝑁 + 2))) + 1))
45 nn0cn 11247 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑚 ∈ ℕ0𝑚 ∈ ℂ)
4645adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ0) → 𝑚 ∈ ℂ)
4746adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → 𝑚 ∈ ℂ)
4830nn0cnd 11298 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 + 2)) ∈ ℂ)
4948adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → (2↑(𝑁 + 2)) ∈ ℂ)
5047, 49mulcld 10005 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → (𝑚 · (2↑(𝑁 + 2))) ∈ ℂ)
5133nn0cnd 11298 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ0) → 𝑛 ∈ ℂ)
5251adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → 𝑛 ∈ ℂ)
5352, 49mulcld 10005 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → (𝑛 · (2↑(𝑁 + 2))) ∈ ℂ)
5450, 53jca 554 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → ((𝑚 · (2↑(𝑁 + 2))) ∈ ℂ ∧ (𝑛 · (2↑(𝑁 + 2))) ∈ ℂ))
5554adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → ((𝑚 · (2↑(𝑁 + 2))) ∈ ℂ ∧ (𝑛 · (2↑(𝑁 + 2))) ∈ ℂ))
56 muladd11r 10194 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑚 · (2↑(𝑁 + 2))) ∈ ℂ ∧ (𝑛 · (2↑(𝑁 + 2))) ∈ ℂ) → (((𝑚 · (2↑(𝑁 + 2))) + 1) · ((𝑛 · (2↑(𝑁 + 2))) + 1)) = ((((𝑚 · (2↑(𝑁 + 2))) · (𝑛 · (2↑(𝑁 + 2)))) + ((𝑚 · (2↑(𝑁 + 2))) + (𝑛 · (2↑(𝑁 + 2))))) + 1))
5755, 56syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (((𝑚 · (2↑(𝑁 + 2))) + 1) · ((𝑛 · (2↑(𝑁 + 2))) + 1)) = ((((𝑚 · (2↑(𝑁 + 2))) · (𝑛 · (2↑(𝑁 + 2)))) + ((𝑚 · (2↑(𝑁 + 2))) + (𝑛 · (2↑(𝑁 + 2))))) + 1))
5825nn0cnd 11298 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ0) → 𝑚 ∈ ℂ)
5958adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → 𝑚 ∈ ℂ)
6059, 52, 493jca 1240 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ∧ (2↑(𝑁 + 2)) ∈ ℂ))
6160adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ∧ (2↑(𝑁 + 2)) ∈ ℂ))
62 adddir 9976 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ∧ (2↑(𝑁 + 2)) ∈ ℂ) → ((𝑚 + 𝑛) · (2↑(𝑁 + 2))) = ((𝑚 · (2↑(𝑁 + 2))) + (𝑛 · (2↑(𝑁 + 2)))))
6361, 62syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → ((𝑚 + 𝑛) · (2↑(𝑁 + 2))) = ((𝑚 · (2↑(𝑁 + 2))) + (𝑛 · (2↑(𝑁 + 2)))))
6463eqcomd 2632 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → ((𝑚 · (2↑(𝑁 + 2))) + (𝑛 · (2↑(𝑁 + 2)))) = ((𝑚 + 𝑛) · (2↑(𝑁 + 2))))
6564oveq2d 6621 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → ((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) · (2↑(𝑁 + 2))) + ((𝑚 · (2↑(𝑁 + 2))) + (𝑛 · (2↑(𝑁 + 2))))) = ((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) · (2↑(𝑁 + 2))) + ((𝑚 + 𝑛) · (2↑(𝑁 + 2)))))
6650adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (𝑚 · (2↑(𝑁 + 2))) ∈ ℂ)
6752adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → 𝑛 ∈ ℂ)
6849adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (2↑(𝑁 + 2)) ∈ ℂ)
6966, 67, 68mulassd 10008 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (((𝑚 · (2↑(𝑁 + 2))) · 𝑛) · (2↑(𝑁 + 2))) = ((𝑚 · (2↑(𝑁 + 2))) · (𝑛 · (2↑(𝑁 + 2)))))
7069eqcomd 2632 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → ((𝑚 · (2↑(𝑁 + 2))) · (𝑛 · (2↑(𝑁 + 2)))) = (((𝑚 · (2↑(𝑁 + 2))) · 𝑛) · (2↑(𝑁 + 2))))
7170oveq1d 6620 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (((𝑚 · (2↑(𝑁 + 2))) · (𝑛 · (2↑(𝑁 + 2)))) + ((𝑚 · (2↑(𝑁 + 2))) + (𝑛 · (2↑(𝑁 + 2))))) = ((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) · (2↑(𝑁 + 2))) + ((𝑚 · (2↑(𝑁 + 2))) + (𝑛 · (2↑(𝑁 + 2))))))
7250, 52mulcld 10005 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → ((𝑚 · (2↑(𝑁 + 2))) · 𝑛) ∈ ℂ)
7336nn0cnd 11298 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑚 ∈ ℕ0𝑛 ∈ ℕ0) → (𝑚 + 𝑛) ∈ ℂ)
7473adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → (𝑚 + 𝑛) ∈ ℂ)
7572, 74, 493jca 1240 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → (((𝑚 · (2↑(𝑁 + 2))) · 𝑛) ∈ ℂ ∧ (𝑚 + 𝑛) ∈ ℂ ∧ (2↑(𝑁 + 2)) ∈ ℂ))
7675adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (((𝑚 · (2↑(𝑁 + 2))) · 𝑛) ∈ ℂ ∧ (𝑚 + 𝑛) ∈ ℂ ∧ (2↑(𝑁 + 2)) ∈ ℂ))
77 adddir 9976 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) ∈ ℂ ∧ (𝑚 + 𝑛) ∈ ℂ ∧ (2↑(𝑁 + 2)) ∈ ℂ) → ((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) · (2↑(𝑁 + 2))) = ((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) · (2↑(𝑁 + 2))) + ((𝑚 + 𝑛) · (2↑(𝑁 + 2)))))
7876, 77syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → ((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) · (2↑(𝑁 + 2))) = ((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) · (2↑(𝑁 + 2))) + ((𝑚 + 𝑛) · (2↑(𝑁 + 2)))))
7965, 71, 783eqtr4d 2670 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (((𝑚 · (2↑(𝑁 + 2))) · (𝑛 · (2↑(𝑁 + 2)))) + ((𝑚 · (2↑(𝑁 + 2))) + (𝑛 · (2↑(𝑁 + 2))))) = ((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) · (2↑(𝑁 + 2))))
8079oveq1d 6620 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → ((((𝑚 · (2↑(𝑁 + 2))) · (𝑛 · (2↑(𝑁 + 2)))) + ((𝑚 · (2↑(𝑁 + 2))) + (𝑛 · (2↑(𝑁 + 2))))) + 1) = (((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) · (2↑(𝑁 + 2))) + 1))
8157, 80eqtrd 2660 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (((𝑚 · (2↑(𝑁 + 2))) + 1) · ((𝑛 · (2↑(𝑁 + 2))) + 1)) = (((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) · (2↑(𝑁 + 2))) + 1))
8281eqeq1d 2628 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → ((((𝑚 · (2↑(𝑁 + 2))) + 1) · ((𝑛 · (2↑(𝑁 + 2))) + 1)) = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ (((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) · (2↑(𝑁 + 2))) + 1) = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
8382rexbidva 3047 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → (∃𝑘 ∈ ℕ0 (((𝑚 · (2↑(𝑁 + 2))) + 1) · ((𝑛 · (2↑(𝑁 + 2))) + 1)) = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ ∃𝑘 ∈ ℕ0 (((((𝑚 · (2↑(𝑁 + 2))) · 𝑛) + (𝑚 + 𝑛)) · (2↑(𝑁 + 2))) + 1) = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
8444, 83mpbird 247 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ (ℤ‘2) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → ∃𝑘 ∈ ℕ0 (((𝑚 · (2↑(𝑁 + 2))) + 1) · ((𝑛 · (2↑(𝑁 + 2))) + 1)) = ((𝑘 · (2↑(𝑁 + 2))) + 1))
8584adantll 749 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → ∃𝑘 ∈ ℕ0 (((𝑚 · (2↑(𝑁 + 2))) + 1) · ((𝑛 · (2↑(𝑁 + 2))) + 1)) = ((𝑘 · (2↑(𝑁 + 2))) + 1))
86 oveq12 6614 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 = ((𝑚 · (2↑(𝑁 + 2))) + 1) ∧ 𝑧 = ((𝑛 · (2↑(𝑁 + 2))) + 1)) → (𝑦 · 𝑧) = (((𝑚 · (2↑(𝑁 + 2))) + 1) · ((𝑛 · (2↑(𝑁 + 2))) + 1)))
8786ancoms 469 . . . . . . . . . . . . . . . . . . 19 ((𝑧 = ((𝑛 · (2↑(𝑁 + 2))) + 1) ∧ 𝑦 = ((𝑚 · (2↑(𝑁 + 2))) + 1)) → (𝑦 · 𝑧) = (((𝑚 · (2↑(𝑁 + 2))) + 1) · ((𝑛 · (2↑(𝑁 + 2))) + 1)))
8887eqeq1d 2628 . . . . . . . . . . . . . . . . . 18 ((𝑧 = ((𝑛 · (2↑(𝑁 + 2))) + 1) ∧ 𝑦 = ((𝑚 · (2↑(𝑁 + 2))) + 1)) → ((𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ (((𝑚 · (2↑(𝑁 + 2))) + 1) · ((𝑛 · (2↑(𝑁 + 2))) + 1)) = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
8988rexbidv 3050 . . . . . . . . . . . . . . . . 17 ((𝑧 = ((𝑛 · (2↑(𝑁 + 2))) + 1) ∧ 𝑦 = ((𝑚 · (2↑(𝑁 + 2))) + 1)) → (∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ ∃𝑘 ∈ ℕ0 (((𝑚 · (2↑(𝑁 + 2))) + 1) · ((𝑛 · (2↑(𝑁 + 2))) + 1)) = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
9085, 89syl5ibrcom 237 . . . . . . . . . . . . . . . 16 ((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → ((𝑧 = ((𝑛 · (2↑(𝑁 + 2))) + 1) ∧ 𝑦 = ((𝑚 · (2↑(𝑁 + 2))) + 1)) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
9190expd 452 . . . . . . . . . . . . . . 15 ((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝑚 ∈ ℕ0𝑛 ∈ ℕ0)) → (𝑧 = ((𝑛 · (2↑(𝑁 + 2))) + 1) → (𝑦 = ((𝑚 · (2↑(𝑁 + 2))) + 1) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
9291anassrs 679 . . . . . . . . . . . . . 14 (((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑁 ∈ (ℤ‘2)) ∧ 𝑚 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑧 = ((𝑛 · (2↑(𝑁 + 2))) + 1) → (𝑦 = ((𝑚 · (2↑(𝑁 + 2))) + 1) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
9392rexlimdva 3029 . . . . . . . . . . . . 13 ((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑁 ∈ (ℤ‘2)) ∧ 𝑚 ∈ ℕ0) → (∃𝑛 ∈ ℕ0 𝑧 = ((𝑛 · (2↑(𝑁 + 2))) + 1) → (𝑦 = ((𝑚 · (2↑(𝑁 + 2))) + 1) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
9424, 93syl5bi 232 . . . . . . . . . . . 12 ((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑁 ∈ (ℤ‘2)) ∧ 𝑚 ∈ ℕ0) → (∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1) → (𝑦 = ((𝑚 · (2↑(𝑁 + 2))) + 1) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
9594com23 86 . . . . . . . . . . 11 ((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑁 ∈ (ℤ‘2)) ∧ 𝑚 ∈ ℕ0) → (𝑦 = ((𝑚 · (2↑(𝑁 + 2))) + 1) → (∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
9695rexlimdva 3029 . . . . . . . . . 10 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑁 ∈ (ℤ‘2)) → (∃𝑚 ∈ ℕ0 𝑦 = ((𝑚 · (2↑(𝑁 + 2))) + 1) → (∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
9720, 96syl5bi 232 . . . . . . . . 9 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑁 ∈ (ℤ‘2)) → (∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1) → (∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
9897impd 447 . . . . . . . 8 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑁 ∈ (ℤ‘2)) → ((∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ∧ ∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
9998adantr 481 . . . . . . 7 ((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝑦 ∥ (FermatNo‘𝑁) ∧ 𝑧 ∥ (FermatNo‘𝑁))) → ((∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ∧ ∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
10014, 16, 99syl2and 500 . . . . . 6 ((((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝑦 ∥ (FermatNo‘𝑁) ∧ 𝑧 ∥ (FermatNo‘𝑁))) → ((((𝑁 ∈ (ℤ‘2) ∧ 𝑦 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) ∧ ((𝑁 ∈ (ℤ‘2) ∧ 𝑧 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1))) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
101100exp32 630 . . . . 5 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑦 ∥ (FermatNo‘𝑁) → (𝑧 ∥ (FermatNo‘𝑁) → ((((𝑁 ∈ (ℤ‘2) ∧ 𝑦 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) ∧ ((𝑁 ∈ (ℤ‘2) ∧ 𝑧 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1))) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1)))))
10212, 101syld 47 . . . 4 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑦 · 𝑧) ∥ (FermatNo‘𝑁) → (𝑧 ∥ (FermatNo‘𝑁) → ((((𝑁 ∈ (ℤ‘2) ∧ 𝑦 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) ∧ ((𝑁 ∈ (ℤ‘2) ∧ 𝑧 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1))) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1)))))
10310, 102mpdd 43 . . 3 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑦 · 𝑧) ∥ (FermatNo‘𝑁) → ((((𝑁 ∈ (ℤ‘2) ∧ 𝑦 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) ∧ ((𝑁 ∈ (ℤ‘2) ∧ 𝑧 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1))) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
104103expimpd 628 . 2 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → ((𝑁 ∈ (ℤ‘2) ∧ (𝑦 · 𝑧) ∥ (FermatNo‘𝑁)) → ((((𝑁 ∈ (ℤ‘2) ∧ 𝑦 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) ∧ ((𝑁 ∈ (ℤ‘2) ∧ 𝑧 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1))) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
105104com23 86 1 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → ((((𝑁 ∈ (ℤ‘2) ∧ 𝑦 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) ∧ ((𝑁 ∈ (ℤ‘2) ∧ 𝑧 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1))) → ((𝑁 ∈ (ℤ‘2) ∧ (𝑦 · 𝑧) ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1992  wrex 2913   class class class wbr 4618  cfv 5850  (class class class)co 6605  cc 9879  1c1 9882   + caddc 9884   · cmul 9886  2c2 11015  0cn0 11237  cz 11322  cuz 11631  cexp 12797  cdvds 14902  FermatNocfmtno 40726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-er 7688  df-en 7901  df-dom 7902  df-sdom 7903  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-div 10630  df-nn 10966  df-2 11024  df-3 11025  df-n0 11238  df-z 11323  df-uz 11632  df-rp 11777  df-seq 12739  df-exp 12798  df-dvds 14903  df-fmtno 40727
This theorem is referenced by:  fmtnofac2  40768
  Copyright terms: Public domain W3C validator