Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnoprmfac1 Structured version   Visualization version   GIF version

Theorem fmtnoprmfac1 42005
Description: Divisor of Fermat number (special form of Euler's result, see fmtnofac1 42010): Let Fn be a Fermat number. Let p be a prime divisor of Fn. Then p is in the form: k*2^(n+1)+1 where k is a positive integer. (Contributed by AV, 25-Jul-2021.)
Assertion
Ref Expression
fmtnoprmfac1 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1))
Distinct variable groups:   𝑘,𝑁   𝑃,𝑘

Proof of Theorem fmtnoprmfac1
StepHypRef Expression
1 breq1 4807 . . . . . . 7 (𝑃 = 2 → (𝑃 ∥ (FermatNo‘𝑁) ↔ 2 ∥ (FermatNo‘𝑁)))
21adantr 472 . . . . . 6 ((𝑃 = 2 ∧ 𝑁 ∈ ℕ) → (𝑃 ∥ (FermatNo‘𝑁) ↔ 2 ∥ (FermatNo‘𝑁)))
3 nnnn0 11511 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
4 fmtnoodd 41973 . . . . . . . . 9 (𝑁 ∈ ℕ0 → ¬ 2 ∥ (FermatNo‘𝑁))
53, 4syl 17 . . . . . . . 8 (𝑁 ∈ ℕ → ¬ 2 ∥ (FermatNo‘𝑁))
65adantl 473 . . . . . . 7 ((𝑃 = 2 ∧ 𝑁 ∈ ℕ) → ¬ 2 ∥ (FermatNo‘𝑁))
76pm2.21d 118 . . . . . 6 ((𝑃 = 2 ∧ 𝑁 ∈ ℕ) → (2 ∥ (FermatNo‘𝑁) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1)))
82, 7sylbid 230 . . . . 5 ((𝑃 = 2 ∧ 𝑁 ∈ ℕ) → (𝑃 ∥ (FermatNo‘𝑁) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1)))
98a1d 25 . . . 4 ((𝑃 = 2 ∧ 𝑁 ∈ ℕ) → (𝑃 ∈ ℙ → (𝑃 ∥ (FermatNo‘𝑁) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1))))
109ex 449 . . 3 (𝑃 = 2 → (𝑁 ∈ ℕ → (𝑃 ∈ ℙ → (𝑃 ∥ (FermatNo‘𝑁) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1)))))
11103impd 1442 . 2 (𝑃 = 2 → ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1)))
12 simpr1 1234 . . . . 5 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) → 𝑁 ∈ ℕ)
13 neqne 2940 . . . . . . . . . 10 𝑃 = 2 → 𝑃 ≠ 2)
1413anim2i 594 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2) → (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2))
15 eldifsn 4462 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) ↔ (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2))
1614, 15sylibr 224 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2) → 𝑃 ∈ (ℙ ∖ {2}))
1716ex 449 . . . . . . 7 (𝑃 ∈ ℙ → (¬ 𝑃 = 2 → 𝑃 ∈ (ℙ ∖ {2})))
18173ad2ant2 1129 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁)) → (¬ 𝑃 = 2 → 𝑃 ∈ (ℙ ∖ {2})))
1918impcom 445 . . . . 5 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) → 𝑃 ∈ (ℙ ∖ {2}))
20 simpr3 1238 . . . . 5 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) → 𝑃 ∥ (FermatNo‘𝑁))
21 fmtnoprmfac1lem 42004 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ((od𝑃)‘2) = (2↑(𝑁 + 1)))
2212, 19, 20, 21syl3anc 1477 . . . 4 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) → ((od𝑃)‘2) = (2↑(𝑁 + 1)))
23 prmnn 15610 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
2423ad2antll 767 . . . . . . 7 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) → 𝑃 ∈ ℕ)
25 2z 11621 . . . . . . . 8 2 ∈ ℤ
2625a1i 11 . . . . . . 7 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) → 2 ∈ ℤ)
2713necomd 2987 . . . . . . . . 9 𝑃 = 2 → 2 ≠ 𝑃)
2827adantr 472 . . . . . . . 8 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) → 2 ≠ 𝑃)
29 2prm 15627 . . . . . . . . . . . 12 2 ∈ ℙ
3029a1i 11 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 2 ∈ ℙ)
3130anim1i 593 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2 ∈ ℙ ∧ 𝑃 ∈ ℙ))
3231adantl 473 . . . . . . . . 9 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) → (2 ∈ ℙ ∧ 𝑃 ∈ ℙ))
33 prmrp 15646 . . . . . . . . 9 ((2 ∈ ℙ ∧ 𝑃 ∈ ℙ) → ((2 gcd 𝑃) = 1 ↔ 2 ≠ 𝑃))
3432, 33syl 17 . . . . . . . 8 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) → ((2 gcd 𝑃) = 1 ↔ 2 ≠ 𝑃))
3528, 34mpbird 247 . . . . . . 7 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) → (2 gcd 𝑃) = 1)
36 odzphi 15723 . . . . . . 7 ((𝑃 ∈ ℕ ∧ 2 ∈ ℤ ∧ (2 gcd 𝑃) = 1) → ((od𝑃)‘2) ∥ (ϕ‘𝑃))
3724, 26, 35, 36syl3anc 1477 . . . . . 6 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) → ((od𝑃)‘2) ∥ (ϕ‘𝑃))
38 phiprm 15704 . . . . . . . . 9 (𝑃 ∈ ℙ → (ϕ‘𝑃) = (𝑃 − 1))
3938ad2antll 767 . . . . . . . 8 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) → (ϕ‘𝑃) = (𝑃 − 1))
4039breq2d 4816 . . . . . . 7 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) → (((od𝑃)‘2) ∥ (ϕ‘𝑃) ↔ ((od𝑃)‘2) ∥ (𝑃 − 1)))
41 breq1 4807 . . . . . . . . . . 11 (((od𝑃)‘2) = (2↑(𝑁 + 1)) → (((od𝑃)‘2) ∥ (𝑃 − 1) ↔ (2↑(𝑁 + 1)) ∥ (𝑃 − 1)))
4241adantl 473 . . . . . . . . . 10 (((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) ∧ ((od𝑃)‘2) = (2↑(𝑁 + 1))) → (((od𝑃)‘2) ∥ (𝑃 − 1) ↔ (2↑(𝑁 + 1)) ∥ (𝑃 − 1)))
43 2nn 11397 . . . . . . . . . . . . . . . . 17 2 ∈ ℕ
4443a1i 11 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → 2 ∈ ℕ)
45 peano2nn 11244 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
4645nnnn0d 11563 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ0)
4744, 46nnexpcld 13244 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → (2↑(𝑁 + 1)) ∈ ℕ)
4823nnnn0d 11563 . . . . . . . . . . . . . . . 16 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ0)
49 prmuz2 15630 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
50 eluzle 11912 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ (ℤ‘2) → 2 ≤ 𝑃)
5149, 50syl 17 . . . . . . . . . . . . . . . 16 (𝑃 ∈ ℙ → 2 ≤ 𝑃)
52 nn0ge2m1nn 11572 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℕ0 ∧ 2 ≤ 𝑃) → (𝑃 − 1) ∈ ℕ)
5348, 51, 52syl2anc 696 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℙ → (𝑃 − 1) ∈ ℕ)
5447, 53anim12i 591 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → ((2↑(𝑁 + 1)) ∈ ℕ ∧ (𝑃 − 1) ∈ ℕ))
5554adantl 473 . . . . . . . . . . . . 13 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) → ((2↑(𝑁 + 1)) ∈ ℕ ∧ (𝑃 − 1) ∈ ℕ))
56 nndivides 15212 . . . . . . . . . . . . 13 (((2↑(𝑁 + 1)) ∈ ℕ ∧ (𝑃 − 1) ∈ ℕ) → ((2↑(𝑁 + 1)) ∥ (𝑃 − 1) ↔ ∃𝑘 ∈ ℕ (𝑘 · (2↑(𝑁 + 1))) = (𝑃 − 1)))
5755, 56syl 17 . . . . . . . . . . . 12 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) → ((2↑(𝑁 + 1)) ∥ (𝑃 − 1) ↔ ∃𝑘 ∈ ℕ (𝑘 · (2↑(𝑁 + 1))) = (𝑃 − 1)))
58 eqcom 2767 . . . . . . . . . . . . . . . 16 ((𝑘 · (2↑(𝑁 + 1))) = (𝑃 − 1) ↔ (𝑃 − 1) = (𝑘 · (2↑(𝑁 + 1))))
5958a1i 11 . . . . . . . . . . . . . . 15 (((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) ∧ 𝑘 ∈ ℕ) → ((𝑘 · (2↑(𝑁 + 1))) = (𝑃 − 1) ↔ (𝑃 − 1) = (𝑘 · (2↑(𝑁 + 1)))))
6023nncnd 11248 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ ℙ → 𝑃 ∈ ℂ)
6160adantl 473 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℂ)
6261adantr 472 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → 𝑃 ∈ ℂ)
63 1cnd 10268 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → 1 ∈ ℂ)
64 nncn 11240 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
6564adantl 473 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
66 peano2nn0 11545 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
673, 66syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ0)
6844, 67nnexpcld 13244 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ → (2↑(𝑁 + 1)) ∈ ℕ)
6968nncnd 11248 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → (2↑(𝑁 + 1)) ∈ ℂ)
7069adantr 472 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2↑(𝑁 + 1)) ∈ ℂ)
7170adantr 472 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → (2↑(𝑁 + 1)) ∈ ℂ)
7265, 71mulcld 10272 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → (𝑘 · (2↑(𝑁 + 1))) ∈ ℂ)
7362, 63, 72subadd2d 10623 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → ((𝑃 − 1) = (𝑘 · (2↑(𝑁 + 1))) ↔ ((𝑘 · (2↑(𝑁 + 1))) + 1) = 𝑃))
7473adantll 752 . . . . . . . . . . . . . . 15 (((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) ∧ 𝑘 ∈ ℕ) → ((𝑃 − 1) = (𝑘 · (2↑(𝑁 + 1))) ↔ ((𝑘 · (2↑(𝑁 + 1))) + 1) = 𝑃))
75 eqcom 2767 . . . . . . . . . . . . . . . 16 (((𝑘 · (2↑(𝑁 + 1))) + 1) = 𝑃𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1))
7675a1i 11 . . . . . . . . . . . . . . 15 (((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) ∧ 𝑘 ∈ ℕ) → (((𝑘 · (2↑(𝑁 + 1))) + 1) = 𝑃𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1)))
7759, 74, 763bitrd 294 . . . . . . . . . . . . . 14 (((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) ∧ 𝑘 ∈ ℕ) → ((𝑘 · (2↑(𝑁 + 1))) = (𝑃 − 1) ↔ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1)))
7877rexbidva 3187 . . . . . . . . . . . . 13 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) → (∃𝑘 ∈ ℕ (𝑘 · (2↑(𝑁 + 1))) = (𝑃 − 1) ↔ ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1)))
7978biimpd 219 . . . . . . . . . . . 12 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) → (∃𝑘 ∈ ℕ (𝑘 · (2↑(𝑁 + 1))) = (𝑃 − 1) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1)))
8057, 79sylbid 230 . . . . . . . . . . 11 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) → ((2↑(𝑁 + 1)) ∥ (𝑃 − 1) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1)))
8180adantr 472 . . . . . . . . . 10 (((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) ∧ ((od𝑃)‘2) = (2↑(𝑁 + 1))) → ((2↑(𝑁 + 1)) ∥ (𝑃 − 1) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1)))
8242, 81sylbid 230 . . . . . . . . 9 (((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) ∧ ((od𝑃)‘2) = (2↑(𝑁 + 1))) → (((od𝑃)‘2) ∥ (𝑃 − 1) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1)))
8382ex 449 . . . . . . . 8 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) → (((od𝑃)‘2) = (2↑(𝑁 + 1)) → (((od𝑃)‘2) ∥ (𝑃 − 1) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1))))
8483com23 86 . . . . . . 7 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) → (((od𝑃)‘2) ∥ (𝑃 − 1) → (((od𝑃)‘2) = (2↑(𝑁 + 1)) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1))))
8540, 84sylbid 230 . . . . . 6 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) → (((od𝑃)‘2) ∥ (ϕ‘𝑃) → (((od𝑃)‘2) = (2↑(𝑁 + 1)) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1))))
8637, 85mpd 15 . . . . 5 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) → (((od𝑃)‘2) = (2↑(𝑁 + 1)) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1)))
87863adantr3 1177 . . . 4 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) → (((od𝑃)‘2) = (2↑(𝑁 + 1)) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1)))
8822, 87mpd 15 . . 3 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1))
8988ex 449 . 2 𝑃 = 2 → ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1)))
9011, 89pm2.61i 176 1 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  wne 2932  wrex 3051  cdif 3712  {csn 4321   class class class wbr 4804  cfv 6049  (class class class)co 6814  cc 10146  1c1 10149   + caddc 10151   · cmul 10153  cle 10287  cmin 10478  cn 11232  2c2 11282  0cn0 11504  cz 11589  cuz 11899  cexp 13074  cdvds 15202   gcd cgcd 15438  cprime 15607  odcodz 15690  ϕcphi 15691  FermatNocfmtno 41967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-2o 7731  df-oadd 7734  df-er 7913  df-map 8027  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-sup 8515  df-inf 8516  df-card 8975  df-cda 9202  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-n0 11505  df-xnn0 11576  df-z 11590  df-uz 11900  df-q 12002  df-rp 12046  df-fz 12540  df-fzo 12680  df-fl 12807  df-mod 12883  df-seq 13016  df-exp 13075  df-hash 13332  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-dvds 15203  df-gcd 15439  df-prm 15608  df-odz 15692  df-phi 15693  df-pc 15764  df-fmtno 41968
This theorem is referenced by:  fmtnoprmfac2lem1  42006
  Copyright terms: Public domain W3C validator