Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnoprmfac1 Structured version   Visualization version   GIF version

Theorem fmtnoprmfac1 43734
Description: Divisor of Fermat number (special form of Euler's result, see fmtnofac1 43739): Let Fn be a Fermat number. Let p be a prime divisor of Fn. Then p is in the form: k*2^(n+1)+1 where k is a positive integer. (Contributed by AV, 25-Jul-2021.)
Assertion
Ref Expression
fmtnoprmfac1 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1))
Distinct variable groups:   𝑘,𝑁   𝑃,𝑘

Proof of Theorem fmtnoprmfac1
StepHypRef Expression
1 breq1 5072 . . . . . . 7 (𝑃 = 2 → (𝑃 ∥ (FermatNo‘𝑁) ↔ 2 ∥ (FermatNo‘𝑁)))
21adantr 483 . . . . . 6 ((𝑃 = 2 ∧ 𝑁 ∈ ℕ) → (𝑃 ∥ (FermatNo‘𝑁) ↔ 2 ∥ (FermatNo‘𝑁)))
3 nnnn0 11907 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
4 fmtnoodd 43702 . . . . . . . . 9 (𝑁 ∈ ℕ0 → ¬ 2 ∥ (FermatNo‘𝑁))
53, 4syl 17 . . . . . . . 8 (𝑁 ∈ ℕ → ¬ 2 ∥ (FermatNo‘𝑁))
65adantl 484 . . . . . . 7 ((𝑃 = 2 ∧ 𝑁 ∈ ℕ) → ¬ 2 ∥ (FermatNo‘𝑁))
76pm2.21d 121 . . . . . 6 ((𝑃 = 2 ∧ 𝑁 ∈ ℕ) → (2 ∥ (FermatNo‘𝑁) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1)))
82, 7sylbid 242 . . . . 5 ((𝑃 = 2 ∧ 𝑁 ∈ ℕ) → (𝑃 ∥ (FermatNo‘𝑁) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1)))
98a1d 25 . . . 4 ((𝑃 = 2 ∧ 𝑁 ∈ ℕ) → (𝑃 ∈ ℙ → (𝑃 ∥ (FermatNo‘𝑁) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1))))
109ex 415 . . 3 (𝑃 = 2 → (𝑁 ∈ ℕ → (𝑃 ∈ ℙ → (𝑃 ∥ (FermatNo‘𝑁) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1)))))
11103impd 1344 . 2 (𝑃 = 2 → ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1)))
12 simpr1 1190 . . . . 5 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) → 𝑁 ∈ ℕ)
13 neqne 3027 . . . . . . . . . 10 𝑃 = 2 → 𝑃 ≠ 2)
1413anim2i 618 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2) → (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2))
15 eldifsn 4722 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) ↔ (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2))
1614, 15sylibr 236 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2) → 𝑃 ∈ (ℙ ∖ {2}))
1716ex 415 . . . . . . 7 (𝑃 ∈ ℙ → (¬ 𝑃 = 2 → 𝑃 ∈ (ℙ ∖ {2})))
18173ad2ant2 1130 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁)) → (¬ 𝑃 = 2 → 𝑃 ∈ (ℙ ∖ {2})))
1918impcom 410 . . . . 5 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) → 𝑃 ∈ (ℙ ∖ {2}))
20 simpr3 1192 . . . . 5 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) → 𝑃 ∥ (FermatNo‘𝑁))
21 fmtnoprmfac1lem 43733 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ((od𝑃)‘2) = (2↑(𝑁 + 1)))
2212, 19, 20, 21syl3anc 1367 . . . 4 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) → ((od𝑃)‘2) = (2↑(𝑁 + 1)))
23 prmnn 16021 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
2423ad2antll 727 . . . . . . 7 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) → 𝑃 ∈ ℕ)
25 2z 12017 . . . . . . . 8 2 ∈ ℤ
2625a1i 11 . . . . . . 7 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) → 2 ∈ ℤ)
2713necomd 3074 . . . . . . . . 9 𝑃 = 2 → 2 ≠ 𝑃)
2827adantr 483 . . . . . . . 8 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) → 2 ≠ 𝑃)
29 2prm 16039 . . . . . . . . . . . 12 2 ∈ ℙ
3029a1i 11 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 2 ∈ ℙ)
3130anim1i 616 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2 ∈ ℙ ∧ 𝑃 ∈ ℙ))
3231adantl 484 . . . . . . . . 9 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) → (2 ∈ ℙ ∧ 𝑃 ∈ ℙ))
33 prmrp 16059 . . . . . . . . 9 ((2 ∈ ℙ ∧ 𝑃 ∈ ℙ) → ((2 gcd 𝑃) = 1 ↔ 2 ≠ 𝑃))
3432, 33syl 17 . . . . . . . 8 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) → ((2 gcd 𝑃) = 1 ↔ 2 ≠ 𝑃))
3528, 34mpbird 259 . . . . . . 7 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) → (2 gcd 𝑃) = 1)
36 odzphi 16136 . . . . . . 7 ((𝑃 ∈ ℕ ∧ 2 ∈ ℤ ∧ (2 gcd 𝑃) = 1) → ((od𝑃)‘2) ∥ (ϕ‘𝑃))
3724, 26, 35, 36syl3anc 1367 . . . . . 6 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) → ((od𝑃)‘2) ∥ (ϕ‘𝑃))
38 phiprm 16117 . . . . . . . . 9 (𝑃 ∈ ℙ → (ϕ‘𝑃) = (𝑃 − 1))
3938ad2antll 727 . . . . . . . 8 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) → (ϕ‘𝑃) = (𝑃 − 1))
4039breq2d 5081 . . . . . . 7 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) → (((od𝑃)‘2) ∥ (ϕ‘𝑃) ↔ ((od𝑃)‘2) ∥ (𝑃 − 1)))
41 breq1 5072 . . . . . . . . . . 11 (((od𝑃)‘2) = (2↑(𝑁 + 1)) → (((od𝑃)‘2) ∥ (𝑃 − 1) ↔ (2↑(𝑁 + 1)) ∥ (𝑃 − 1)))
4241adantl 484 . . . . . . . . . 10 (((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) ∧ ((od𝑃)‘2) = (2↑(𝑁 + 1))) → (((od𝑃)‘2) ∥ (𝑃 − 1) ↔ (2↑(𝑁 + 1)) ∥ (𝑃 − 1)))
43 2nn 11713 . . . . . . . . . . . . . . . . 17 2 ∈ ℕ
4443a1i 11 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → 2 ∈ ℕ)
45 peano2nn 11653 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
4645nnnn0d 11958 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ0)
4744, 46nnexpcld 13609 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → (2↑(𝑁 + 1)) ∈ ℕ)
4823nnnn0d 11958 . . . . . . . . . . . . . . . 16 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ0)
49 prmuz2 16043 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
50 eluzle 12259 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ (ℤ‘2) → 2 ≤ 𝑃)
5149, 50syl 17 . . . . . . . . . . . . . . . 16 (𝑃 ∈ ℙ → 2 ≤ 𝑃)
52 nn0ge2m1nn 11967 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℕ0 ∧ 2 ≤ 𝑃) → (𝑃 − 1) ∈ ℕ)
5348, 51, 52syl2anc 586 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℙ → (𝑃 − 1) ∈ ℕ)
5447, 53anim12i 614 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → ((2↑(𝑁 + 1)) ∈ ℕ ∧ (𝑃 − 1) ∈ ℕ))
5554adantl 484 . . . . . . . . . . . . 13 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) → ((2↑(𝑁 + 1)) ∈ ℕ ∧ (𝑃 − 1) ∈ ℕ))
56 nndivides 15620 . . . . . . . . . . . . 13 (((2↑(𝑁 + 1)) ∈ ℕ ∧ (𝑃 − 1) ∈ ℕ) → ((2↑(𝑁 + 1)) ∥ (𝑃 − 1) ↔ ∃𝑘 ∈ ℕ (𝑘 · (2↑(𝑁 + 1))) = (𝑃 − 1)))
5755, 56syl 17 . . . . . . . . . . . 12 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) → ((2↑(𝑁 + 1)) ∥ (𝑃 − 1) ↔ ∃𝑘 ∈ ℕ (𝑘 · (2↑(𝑁 + 1))) = (𝑃 − 1)))
58 eqcom 2831 . . . . . . . . . . . . . . . 16 ((𝑘 · (2↑(𝑁 + 1))) = (𝑃 − 1) ↔ (𝑃 − 1) = (𝑘 · (2↑(𝑁 + 1))))
5958a1i 11 . . . . . . . . . . . . . . 15 (((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) ∧ 𝑘 ∈ ℕ) → ((𝑘 · (2↑(𝑁 + 1))) = (𝑃 − 1) ↔ (𝑃 − 1) = (𝑘 · (2↑(𝑁 + 1)))))
6023nncnd 11657 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ ℙ → 𝑃 ∈ ℂ)
6160adantl 484 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℂ)
6261adantr 483 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → 𝑃 ∈ ℂ)
63 1cnd 10639 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → 1 ∈ ℂ)
64 nncn 11649 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
6564adantl 484 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
66 peano2nn0 11940 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
673, 66syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ0)
6844, 67nnexpcld 13609 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ → (2↑(𝑁 + 1)) ∈ ℕ)
6968nncnd 11657 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → (2↑(𝑁 + 1)) ∈ ℂ)
7069adantr 483 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2↑(𝑁 + 1)) ∈ ℂ)
7170adantr 483 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → (2↑(𝑁 + 1)) ∈ ℂ)
7265, 71mulcld 10664 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → (𝑘 · (2↑(𝑁 + 1))) ∈ ℂ)
7362, 63, 72subadd2d 11019 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → ((𝑃 − 1) = (𝑘 · (2↑(𝑁 + 1))) ↔ ((𝑘 · (2↑(𝑁 + 1))) + 1) = 𝑃))
7473adantll 712 . . . . . . . . . . . . . . 15 (((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) ∧ 𝑘 ∈ ℕ) → ((𝑃 − 1) = (𝑘 · (2↑(𝑁 + 1))) ↔ ((𝑘 · (2↑(𝑁 + 1))) + 1) = 𝑃))
75 eqcom 2831 . . . . . . . . . . . . . . . 16 (((𝑘 · (2↑(𝑁 + 1))) + 1) = 𝑃𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1))
7675a1i 11 . . . . . . . . . . . . . . 15 (((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) ∧ 𝑘 ∈ ℕ) → (((𝑘 · (2↑(𝑁 + 1))) + 1) = 𝑃𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1)))
7759, 74, 763bitrd 307 . . . . . . . . . . . . . 14 (((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) ∧ 𝑘 ∈ ℕ) → ((𝑘 · (2↑(𝑁 + 1))) = (𝑃 − 1) ↔ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1)))
7877rexbidva 3299 . . . . . . . . . . . . 13 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) → (∃𝑘 ∈ ℕ (𝑘 · (2↑(𝑁 + 1))) = (𝑃 − 1) ↔ ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1)))
7978biimpd 231 . . . . . . . . . . . 12 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) → (∃𝑘 ∈ ℕ (𝑘 · (2↑(𝑁 + 1))) = (𝑃 − 1) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1)))
8057, 79sylbid 242 . . . . . . . . . . 11 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) → ((2↑(𝑁 + 1)) ∥ (𝑃 − 1) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1)))
8180adantr 483 . . . . . . . . . 10 (((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) ∧ ((od𝑃)‘2) = (2↑(𝑁 + 1))) → ((2↑(𝑁 + 1)) ∥ (𝑃 − 1) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1)))
8242, 81sylbid 242 . . . . . . . . 9 (((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) ∧ ((od𝑃)‘2) = (2↑(𝑁 + 1))) → (((od𝑃)‘2) ∥ (𝑃 − 1) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1)))
8382ex 415 . . . . . . . 8 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) → (((od𝑃)‘2) = (2↑(𝑁 + 1)) → (((od𝑃)‘2) ∥ (𝑃 − 1) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1))))
8483com23 86 . . . . . . 7 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) → (((od𝑃)‘2) ∥ (𝑃 − 1) → (((od𝑃)‘2) = (2↑(𝑁 + 1)) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1))))
8540, 84sylbid 242 . . . . . 6 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) → (((od𝑃)‘2) ∥ (ϕ‘𝑃) → (((od𝑃)‘2) = (2↑(𝑁 + 1)) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1))))
8637, 85mpd 15 . . . . 5 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ)) → (((od𝑃)‘2) = (2↑(𝑁 + 1)) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1)))
87863adantr3 1167 . . . 4 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) → (((od𝑃)‘2) = (2↑(𝑁 + 1)) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1)))
8822, 87mpd 15 . . 3 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1))
8988ex 415 . 2 𝑃 = 2 → ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1)))
9011, 89pm2.61i 184 1 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 1))) + 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  wne 3019  wrex 3142  cdif 3936  {csn 4570   class class class wbr 5069  cfv 6358  (class class class)co 7159  cc 10538  1c1 10541   + caddc 10543   · cmul 10545  cle 10679  cmin 10873  cn 11641  2c2 11695  0cn0 11900  cz 11984  cuz 12246  cexp 13432  cdvds 15610   gcd cgcd 15846  cprime 16018  odcodz 16103  ϕcphi 16104  FermatNocfmtno 43696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-er 8292  df-map 8411  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-sup 8909  df-inf 8910  df-dju 9333  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-n0 11901  df-xnn0 11971  df-z 11985  df-uz 12247  df-q 12352  df-rp 12393  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-dvds 15611  df-gcd 15847  df-prm 16019  df-odz 16105  df-phi 16106  df-pc 16177  df-fmtno 43697
This theorem is referenced by:  fmtnoprmfac2lem1  43735
  Copyright terms: Public domain W3C validator