Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnoprmfac2 Structured version   Visualization version   GIF version

Theorem fmtnoprmfac2 40804
Description: Divisor of Fermat number (special form of Lucas' result, see fmtnofac2 40806): Let Fn be a Fermat number. Let p be a prime divisor of Fn. Then p is in the form: k*2^(n+2)+1 where k is a positive integer. (Contributed by AV, 26-Jul-2021.)
Assertion
Ref Expression
fmtnoprmfac2 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1))
Distinct variable groups:   𝑘,𝑁   𝑃,𝑘

Proof of Theorem fmtnoprmfac2
StepHypRef Expression
1 breq1 4621 . . . . . . 7 (𝑃 = 2 → (𝑃 ∥ (FermatNo‘𝑁) ↔ 2 ∥ (FermatNo‘𝑁)))
21adantr 481 . . . . . 6 ((𝑃 = 2 ∧ 𝑁 ∈ (ℤ‘2)) → (𝑃 ∥ (FermatNo‘𝑁) ↔ 2 ∥ (FermatNo‘𝑁)))
3 eluzge2nn0 11679 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ0)
4 fmtnoodd 40770 . . . . . . . . 9 (𝑁 ∈ ℕ0 → ¬ 2 ∥ (FermatNo‘𝑁))
53, 4syl 17 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → ¬ 2 ∥ (FermatNo‘𝑁))
65adantl 482 . . . . . . 7 ((𝑃 = 2 ∧ 𝑁 ∈ (ℤ‘2)) → ¬ 2 ∥ (FermatNo‘𝑁))
76pm2.21d 118 . . . . . 6 ((𝑃 = 2 ∧ 𝑁 ∈ (ℤ‘2)) → (2 ∥ (FermatNo‘𝑁) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
82, 7sylbid 230 . . . . 5 ((𝑃 = 2 ∧ 𝑁 ∈ (ℤ‘2)) → (𝑃 ∥ (FermatNo‘𝑁) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
98a1d 25 . . . 4 ((𝑃 = 2 ∧ 𝑁 ∈ (ℤ‘2)) → (𝑃 ∈ ℙ → (𝑃 ∥ (FermatNo‘𝑁) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
109ex 450 . . 3 (𝑃 = 2 → (𝑁 ∈ (ℤ‘2) → (𝑃 ∈ ℙ → (𝑃 ∥ (FermatNo‘𝑁) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))))
11103impd 1278 . 2 (𝑃 = 2 → ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
12 simpr1 1065 . . . . 5 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) → 𝑁 ∈ (ℤ‘2))
13 neqne 2798 . . . . . . . . . 10 𝑃 = 2 → 𝑃 ≠ 2)
1413anim2i 592 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2) → (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2))
15 eldifsn 4292 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) ↔ (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2))
1614, 15sylibr 224 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2) → 𝑃 ∈ (ℙ ∖ {2}))
1716ex 450 . . . . . . 7 (𝑃 ∈ ℙ → (¬ 𝑃 = 2 → 𝑃 ∈ (ℙ ∖ {2})))
18173ad2ant2 1081 . . . . . 6 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁)) → (¬ 𝑃 = 2 → 𝑃 ∈ (ℙ ∖ {2})))
1918impcom 446 . . . . 5 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) → 𝑃 ∈ (ℙ ∖ {2}))
20 simpr3 1067 . . . . 5 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) → 𝑃 ∥ (FermatNo‘𝑁))
21 fmtnoprmfac2lem1 40803 . . . . 5 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ((2↑((𝑃 − 1) / 2)) mod 𝑃) = 1)
2212, 19, 20, 21syl3anc 1323 . . . 4 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) → ((2↑((𝑃 − 1) / 2)) mod 𝑃) = 1)
23 simpl 473 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2) → 𝑃 ∈ ℙ)
24 2nn 11137 . . . . . . . . . . . . 13 2 ∈ ℕ
2524a1i 11 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2) → 2 ∈ ℕ)
26 oddprm 15450 . . . . . . . . . . . . . 14 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ)
2716, 26syl 17 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2) → ((𝑃 − 1) / 2) ∈ ℕ)
2827nnnn0d 11303 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2) → ((𝑃 − 1) / 2) ∈ ℕ0)
2925, 28nnexpcld 12978 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2) → (2↑((𝑃 − 1) / 2)) ∈ ℕ)
3029nnzd 11433 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2) → (2↑((𝑃 − 1) / 2)) ∈ ℤ)
3123, 30jca 554 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2) → (𝑃 ∈ ℙ ∧ (2↑((𝑃 − 1) / 2)) ∈ ℤ))
3231ex 450 . . . . . . . 8 (𝑃 ∈ ℙ → (¬ 𝑃 = 2 → (𝑃 ∈ ℙ ∧ (2↑((𝑃 − 1) / 2)) ∈ ℤ)))
33323ad2ant2 1081 . . . . . . 7 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁)) → (¬ 𝑃 = 2 → (𝑃 ∈ ℙ ∧ (2↑((𝑃 − 1) / 2)) ∈ ℤ)))
3433impcom 446 . . . . . 6 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) → (𝑃 ∈ ℙ ∧ (2↑((𝑃 − 1) / 2)) ∈ ℤ))
35 modprm1div 15437 . . . . . 6 ((𝑃 ∈ ℙ ∧ (2↑((𝑃 − 1) / 2)) ∈ ℤ) → (((2↑((𝑃 − 1) / 2)) mod 𝑃) = 1 ↔ 𝑃 ∥ ((2↑((𝑃 − 1) / 2)) − 1)))
3634, 35syl 17 . . . . 5 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) → (((2↑((𝑃 − 1) / 2)) mod 𝑃) = 1 ↔ 𝑃 ∥ ((2↑((𝑃 − 1) / 2)) − 1)))
37 prmnn 15323 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
3837adantr 481 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2) → 𝑃 ∈ ℕ)
39 2z 11361 . . . . . . . . . . . . 13 2 ∈ ℤ
4039a1i 11 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2) → 2 ∈ ℤ)
4113necomd 2845 . . . . . . . . . . . . . 14 𝑃 = 2 → 2 ≠ 𝑃)
4241adantl 482 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2) → 2 ≠ 𝑃)
43 2prm 15340 . . . . . . . . . . . . . . . . 17 2 ∈ ℙ
4443a1i 11 . . . . . . . . . . . . . . . 16 𝑃 = 2 → 2 ∈ ℙ)
4544anim2i 592 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2) → (𝑃 ∈ ℙ ∧ 2 ∈ ℙ))
4645ancomd 467 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2) → (2 ∈ ℙ ∧ 𝑃 ∈ ℙ))
47 prmrp 15359 . . . . . . . . . . . . . 14 ((2 ∈ ℙ ∧ 𝑃 ∈ ℙ) → ((2 gcd 𝑃) = 1 ↔ 2 ≠ 𝑃))
4846, 47syl 17 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2) → ((2 gcd 𝑃) = 1 ↔ 2 ≠ 𝑃))
4942, 48mpbird 247 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2) → (2 gcd 𝑃) = 1)
5038, 40, 493jca 1240 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2) → (𝑃 ∈ ℕ ∧ 2 ∈ ℤ ∧ (2 gcd 𝑃) = 1))
5150, 28jca 554 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2) → ((𝑃 ∈ ℕ ∧ 2 ∈ ℤ ∧ (2 gcd 𝑃) = 1) ∧ ((𝑃 − 1) / 2) ∈ ℕ0))
5251ex 450 . . . . . . . . 9 (𝑃 ∈ ℙ → (¬ 𝑃 = 2 → ((𝑃 ∈ ℕ ∧ 2 ∈ ℤ ∧ (2 gcd 𝑃) = 1) ∧ ((𝑃 − 1) / 2) ∈ ℕ0)))
53523ad2ant2 1081 . . . . . . . 8 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁)) → (¬ 𝑃 = 2 → ((𝑃 ∈ ℕ ∧ 2 ∈ ℤ ∧ (2 gcd 𝑃) = 1) ∧ ((𝑃 − 1) / 2) ∈ ℕ0)))
5453impcom 446 . . . . . . 7 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) → ((𝑃 ∈ ℕ ∧ 2 ∈ ℤ ∧ (2 gcd 𝑃) = 1) ∧ ((𝑃 − 1) / 2) ∈ ℕ0))
55 odzdvds 15435 . . . . . . 7 (((𝑃 ∈ ℕ ∧ 2 ∈ ℤ ∧ (2 gcd 𝑃) = 1) ∧ ((𝑃 − 1) / 2) ∈ ℕ0) → (𝑃 ∥ ((2↑((𝑃 − 1) / 2)) − 1) ↔ ((od𝑃)‘2) ∥ ((𝑃 − 1) / 2)))
5654, 55syl 17 . . . . . 6 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) → (𝑃 ∥ ((2↑((𝑃 − 1) / 2)) − 1) ↔ ((od𝑃)‘2) ∥ ((𝑃 − 1) / 2)))
57 eluz2nn 11678 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
58573ad2ant1 1080 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁)) → 𝑁 ∈ ℕ)
5958adantl 482 . . . . . . . 8 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) → 𝑁 ∈ ℕ)
60 fmtnoprmfac1lem 40801 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ((od𝑃)‘2) = (2↑(𝑁 + 1)))
6159, 19, 20, 60syl3anc 1323 . . . . . . 7 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) → ((od𝑃)‘2) = (2↑(𝑁 + 1)))
62 breq1 4621 . . . . . . . . . 10 (((od𝑃)‘2) = (2↑(𝑁 + 1)) → (((od𝑃)‘2) ∥ ((𝑃 − 1) / 2) ↔ (2↑(𝑁 + 1)) ∥ ((𝑃 − 1) / 2)))
6362adantl 482 . . . . . . . . 9 (((¬ 𝑃 = 2 ∧ (𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) ∧ ((od𝑃)‘2) = (2↑(𝑁 + 1))) → (((od𝑃)‘2) ∥ ((𝑃 − 1) / 2) ↔ (2↑(𝑁 + 1)) ∥ ((𝑃 − 1) / 2)))
6424a1i 11 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℕ)
65 peano2nn 10984 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
6657, 65syl 17 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘2) → (𝑁 + 1) ∈ ℕ)
6766nnnn0d 11303 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → (𝑁 + 1) ∈ ℕ0)
6864, 67nnexpcld 12978 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 + 1)) ∈ ℕ)
69 nndivides 14925 . . . . . . . . . . . . . . 15 (((2↑(𝑁 + 1)) ∈ ℕ ∧ ((𝑃 − 1) / 2) ∈ ℕ) → ((2↑(𝑁 + 1)) ∥ ((𝑃 − 1) / 2) ↔ ∃𝑘 ∈ ℕ (𝑘 · (2↑(𝑁 + 1))) = ((𝑃 − 1) / 2)))
7068, 27, 69syl2an 494 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ‘2) ∧ (𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2)) → ((2↑(𝑁 + 1)) ∥ ((𝑃 − 1) / 2) ↔ ∃𝑘 ∈ ℕ (𝑘 · (2↑(𝑁 + 1))) = ((𝑃 − 1) / 2)))
71 eqcom 2628 . . . . . . . . . . . . . . . . . . 19 ((𝑘 · (2↑(𝑁 + 1))) = ((𝑃 − 1) / 2) ↔ ((𝑃 − 1) / 2) = (𝑘 · (2↑(𝑁 + 1))))
7271a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → ((𝑘 · (2↑(𝑁 + 1))) = ((𝑃 − 1) / 2) ↔ ((𝑃 − 1) / 2) = (𝑘 · (2↑(𝑁 + 1)))))
7337nncnd 10988 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 ∈ ℙ → 𝑃 ∈ ℂ)
74 peano2cnm 10299 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 ∈ ℂ → (𝑃 − 1) ∈ ℂ)
7573, 74syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ ℙ → (𝑃 − 1) ∈ ℂ)
7675adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) → (𝑃 − 1) ∈ ℂ)
7776adantr 481 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → (𝑃 − 1) ∈ ℂ)
78 simpr 477 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
7968ad2antrr 761 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → (2↑(𝑁 + 1)) ∈ ℕ)
8078, 79nnmulcld 11020 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → (𝑘 · (2↑(𝑁 + 1))) ∈ ℕ)
8180nncnd 10988 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → (𝑘 · (2↑(𝑁 + 1))) ∈ ℂ)
82 2cnne0 11194 . . . . . . . . . . . . . . . . . . . 20 (2 ∈ ℂ ∧ 2 ≠ 0)
8382a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → (2 ∈ ℂ ∧ 2 ≠ 0))
84 divmul3 10642 . . . . . . . . . . . . . . . . . . 19 (((𝑃 − 1) ∈ ℂ ∧ (𝑘 · (2↑(𝑁 + 1))) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (((𝑃 − 1) / 2) = (𝑘 · (2↑(𝑁 + 1))) ↔ (𝑃 − 1) = ((𝑘 · (2↑(𝑁 + 1))) · 2)))
8577, 81, 83, 84syl3anc 1323 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → (((𝑃 − 1) / 2) = (𝑘 · (2↑(𝑁 + 1))) ↔ (𝑃 − 1) = ((𝑘 · (2↑(𝑁 + 1))) · 2)))
86 nncn 10980 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
8786adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
8868nncnd 10988 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 + 1)) ∈ ℂ)
8988ad2antrr 761 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → (2↑(𝑁 + 1)) ∈ ℂ)
90 2cnd 11045 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → 2 ∈ ℂ)
9187, 89, 90mulassd 10015 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → ((𝑘 · (2↑(𝑁 + 1))) · 2) = (𝑘 · ((2↑(𝑁 + 1)) · 2)))
92 2cnd 11045 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ → 2 ∈ ℂ)
9365nnnn0d 11303 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ0)
9492, 93expp1d 12957 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → (2↑((𝑁 + 1) + 1)) = ((2↑(𝑁 + 1)) · 2))
95 nncn 10980 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
96 add1p1 11235 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℂ → ((𝑁 + 1) + 1) = (𝑁 + 2))
9795, 96syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ → ((𝑁 + 1) + 1) = (𝑁 + 2))
9897oveq2d 6626 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → (2↑((𝑁 + 1) + 1)) = (2↑(𝑁 + 2)))
9994, 98eqtr3d 2657 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ → ((2↑(𝑁 + 1)) · 2) = (2↑(𝑁 + 2)))
10057, 99syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ (ℤ‘2) → ((2↑(𝑁 + 1)) · 2) = (2↑(𝑁 + 2)))
101100ad2antrr 761 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → ((2↑(𝑁 + 1)) · 2) = (2↑(𝑁 + 2)))
102101oveq2d 6626 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → (𝑘 · ((2↑(𝑁 + 1)) · 2)) = (𝑘 · (2↑(𝑁 + 2))))
10391, 102eqtrd 2655 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → ((𝑘 · (2↑(𝑁 + 1))) · 2) = (𝑘 · (2↑(𝑁 + 2))))
104103eqeq2d 2631 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → ((𝑃 − 1) = ((𝑘 · (2↑(𝑁 + 1))) · 2) ↔ (𝑃 − 1) = (𝑘 · (2↑(𝑁 + 2)))))
10573adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℂ)
106105adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → 𝑃 ∈ ℂ)
107 1cnd 10008 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → 1 ∈ ℂ)
108 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ)
10924a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℕ → 2 ∈ ℕ)
110108, 109nnaddcld 11019 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ → (𝑁 + 2) ∈ ℕ)
111110nnnn0d 11303 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → (𝑁 + 2) ∈ ℕ0)
11257, 111syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ (ℤ‘2) → (𝑁 + 2) ∈ ℕ0)
11364, 112nnexpcld 12978 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 + 2)) ∈ ℕ)
114113nncnd 10988 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 + 2)) ∈ ℂ)
115114ad2antrr 761 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → (2↑(𝑁 + 2)) ∈ ℂ)
11687, 115mulcld 10012 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → (𝑘 · (2↑(𝑁 + 2))) ∈ ℂ)
117106, 107, 116subadd2d 10363 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → ((𝑃 − 1) = (𝑘 · (2↑(𝑁 + 2))) ↔ ((𝑘 · (2↑(𝑁 + 2))) + 1) = 𝑃))
118 eqcom 2628 . . . . . . . . . . . . . . . . . . . 20 (((𝑘 · (2↑(𝑁 + 2))) + 1) = 𝑃𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1))
119118a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → (((𝑘 · (2↑(𝑁 + 2))) + 1) = 𝑃𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
120104, 117, 1193bitrd 294 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → ((𝑃 − 1) = ((𝑘 · (2↑(𝑁 + 1))) · 2) ↔ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
12172, 85, 1203bitrd 294 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → ((𝑘 · (2↑(𝑁 + 1))) = ((𝑃 − 1) / 2) ↔ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
122121rexbidva 3043 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) → (∃𝑘 ∈ ℕ (𝑘 · (2↑(𝑁 + 1))) = ((𝑃 − 1) / 2) ↔ ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
123122biimpd 219 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) → (∃𝑘 ∈ ℕ (𝑘 · (2↑(𝑁 + 1))) = ((𝑃 − 1) / 2) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
124123adantrr 752 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ‘2) ∧ (𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2)) → (∃𝑘 ∈ ℕ (𝑘 · (2↑(𝑁 + 1))) = ((𝑃 − 1) / 2) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
12570, 124sylbid 230 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘2) ∧ (𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2)) → ((2↑(𝑁 + 1)) ∥ ((𝑃 − 1) / 2) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
126125expr 642 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) → (¬ 𝑃 = 2 → ((2↑(𝑁 + 1)) ∥ ((𝑃 − 1) / 2) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
1271263adant3 1079 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁)) → (¬ 𝑃 = 2 → ((2↑(𝑁 + 1)) ∥ ((𝑃 − 1) / 2) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
128127impcom 446 . . . . . . . . . 10 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) → ((2↑(𝑁 + 1)) ∥ ((𝑃 − 1) / 2) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
129128adantr 481 . . . . . . . . 9 (((¬ 𝑃 = 2 ∧ (𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) ∧ ((od𝑃)‘2) = (2↑(𝑁 + 1))) → ((2↑(𝑁 + 1)) ∥ ((𝑃 − 1) / 2) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
13063, 129sylbid 230 . . . . . . . 8 (((¬ 𝑃 = 2 ∧ (𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) ∧ ((od𝑃)‘2) = (2↑(𝑁 + 1))) → (((od𝑃)‘2) ∥ ((𝑃 − 1) / 2) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
131130ex 450 . . . . . . 7 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) → (((od𝑃)‘2) = (2↑(𝑁 + 1)) → (((od𝑃)‘2) ∥ ((𝑃 − 1) / 2) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
13261, 131mpd 15 . . . . . 6 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) → (((od𝑃)‘2) ∥ ((𝑃 − 1) / 2) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
13356, 132sylbid 230 . . . . 5 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) → (𝑃 ∥ ((2↑((𝑃 − 1) / 2)) − 1) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
13436, 133sylbid 230 . . . 4 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) → (((2↑((𝑃 − 1) / 2)) mod 𝑃) = 1 → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
13522, 134mpd 15 . . 3 ((¬ 𝑃 = 2 ∧ (𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁))) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1))
136135ex 450 . 2 𝑃 = 2 → ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
13711, 136pm2.61i 176 1 ((𝑁 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(𝑁 + 2))) + 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  wrex 2908  cdif 3556  {csn 4153   class class class wbr 4618  cfv 5852  (class class class)co 6610  cc 9886  0cc0 9888  1c1 9889   + caddc 9891   · cmul 9893  cmin 10218   / cdiv 10636  cn 10972  2c2 11022  0cn0 11244  cz 11329  cuz 11639   mod cmo 12616  cexp 12808  cdvds 14918   gcd cgcd 15151  cprime 15320  odcodz 15403  FermatNocfmtno 40764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8490  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-pre-sup 9966
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-2o 7513  df-oadd 7516  df-er 7694  df-map 7811  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-sup 8300  df-inf 8301  df-oi 8367  df-card 8717  df-cda 8942  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-nn 10973  df-2 11031  df-3 11032  df-4 11033  df-5 11034  df-6 11035  df-7 11036  df-8 11037  df-n0 11245  df-xnn0 11316  df-z 11330  df-uz 11640  df-q 11741  df-rp 11785  df-ioo 12129  df-ico 12131  df-fz 12277  df-fzo 12415  df-fl 12541  df-mod 12617  df-seq 12750  df-exp 12809  df-fac 13009  df-hash 13066  df-cj 13781  df-re 13782  df-im 13783  df-sqrt 13917  df-abs 13918  df-clim 14161  df-prod 14572  df-dvds 14919  df-gcd 15152  df-prm 15321  df-odz 15405  df-phi 15406  df-pc 15477  df-lgs 24937  df-fmtno 40765
This theorem is referenced by:  fmtnofac2  40806  fmtno4prmfac  40809
  Copyright terms: Public domain W3C validator