Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnosqrt Structured version   Visualization version   GIF version

Theorem fmtnosqrt 41776
Description: The floor of the square root of a Fermat number. (Contributed by AV, 28-Jul-2021.)
Assertion
Ref Expression
fmtnosqrt (𝑁 ∈ ℕ → (⌊‘(√‘(FermatNo‘𝑁))) = (2↑(2↑(𝑁 − 1))))

Proof of Theorem fmtnosqrt
StepHypRef Expression
1 nnnn0 11337 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
2 fmtno 41766 . . . . 5 (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) = ((2↑(2↑𝑁)) + 1))
31, 2syl 17 . . . 4 (𝑁 ∈ ℕ → (FermatNo‘𝑁) = ((2↑(2↑𝑁)) + 1))
43fveq2d 6233 . . 3 (𝑁 ∈ ℕ → (√‘(FermatNo‘𝑁)) = (√‘((2↑(2↑𝑁)) + 1)))
54fveq2d 6233 . 2 (𝑁 ∈ ℕ → (⌊‘(√‘(FermatNo‘𝑁))) = (⌊‘(√‘((2↑(2↑𝑁)) + 1))))
6 id 22 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ)
7 1nn0 11346 . . . . 5 1 ∈ ℕ0
87a1i 11 . . . 4 (𝑁 ∈ ℕ → 1 ∈ ℕ0)
9 2nn 11223 . . . . . . . 8 2 ∈ ℕ
109a1i 11 . . . . . . 7 (𝑁 ∈ ℕ → 2 ∈ ℕ)
11 2nn0 11347 . . . . . . . . . 10 2 ∈ ℕ0
1211a1i 11 . . . . . . . . 9 (𝑁 ∈ ℕ → 2 ∈ ℕ0)
13 nnm1nn0 11372 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
1412, 13nn0expcld 13071 . . . . . . . 8 (𝑁 ∈ ℕ → (2↑(𝑁 − 1)) ∈ ℕ0)
15 peano2nn0 11371 . . . . . . . 8 ((2↑(𝑁 − 1)) ∈ ℕ0 → ((2↑(𝑁 − 1)) + 1) ∈ ℕ0)
1614, 15syl 17 . . . . . . 7 (𝑁 ∈ ℕ → ((2↑(𝑁 − 1)) + 1) ∈ ℕ0)
1710, 16nnexpcld 13070 . . . . . 6 (𝑁 ∈ ℕ → (2↑((2↑(𝑁 − 1)) + 1)) ∈ ℕ)
18 nngt0 11087 . . . . . 6 ((2↑((2↑(𝑁 − 1)) + 1)) ∈ ℕ → 0 < (2↑((2↑(𝑁 − 1)) + 1)))
1917, 18syl 17 . . . . 5 (𝑁 ∈ ℕ → 0 < (2↑((2↑(𝑁 − 1)) + 1)))
2012, 16nn0expcld 13071 . . . . . . . 8 (𝑁 ∈ ℕ → (2↑((2↑(𝑁 − 1)) + 1)) ∈ ℕ0)
2120nn0red 11390 . . . . . . 7 (𝑁 ∈ ℕ → (2↑((2↑(𝑁 − 1)) + 1)) ∈ ℝ)
22 1re 10077 . . . . . . . 8 1 ∈ ℝ
2322a1i 11 . . . . . . 7 (𝑁 ∈ ℕ → 1 ∈ ℝ)
2421, 23jca 553 . . . . . 6 (𝑁 ∈ ℕ → ((2↑((2↑(𝑁 − 1)) + 1)) ∈ ℝ ∧ 1 ∈ ℝ))
25 ltaddpos2 10557 . . . . . 6 (((2↑((2↑(𝑁 − 1)) + 1)) ∈ ℝ ∧ 1 ∈ ℝ) → (0 < (2↑((2↑(𝑁 − 1)) + 1)) ↔ 1 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1)))
2624, 25syl 17 . . . . 5 (𝑁 ∈ ℕ → (0 < (2↑((2↑(𝑁 − 1)) + 1)) ↔ 1 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1)))
2719, 26mpbid 222 . . . 4 (𝑁 ∈ ℕ → 1 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1))
286, 8, 273jca 1261 . . 3 (𝑁 ∈ ℕ → (𝑁 ∈ ℕ ∧ 1 ∈ ℕ0 ∧ 1 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1)))
29 sqrtpwpw2p 41775 . . 3 ((𝑁 ∈ ℕ ∧ 1 ∈ ℕ0 ∧ 1 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1)) → (⌊‘(√‘((2↑(2↑𝑁)) + 1))) = (2↑(2↑(𝑁 − 1))))
3028, 29syl 17 . 2 (𝑁 ∈ ℕ → (⌊‘(√‘((2↑(2↑𝑁)) + 1))) = (2↑(2↑(𝑁 − 1))))
315, 30eqtrd 2685 1 (𝑁 ∈ ℕ → (⌊‘(√‘(FermatNo‘𝑁))) = (2↑(2↑(𝑁 − 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030   class class class wbr 4685  cfv 5926  (class class class)co 6690  cr 9973  0cc0 9974  1c1 9975   + caddc 9977   < clt 10112  cmin 10304  cn 11058  2c2 11108  0cn0 11330  cfl 12631  cexp 12900  csqrt 14017  FermatNocfmtno 41764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-fl 12633  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-fmtno 41765
This theorem is referenced by:  fmtno4sqrt  41808
  Copyright terms: Public domain W3C validator