Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmul01lt1lem2 Structured version   Visualization version   GIF version

Theorem fmul01lt1lem2 40320
Description: Given a finite multiplication of values betweeen 0 and 1, a value 𝐸 larger than any multiplicand, is larger than the whole multiplication. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
fmul01lt1lem2.1 𝑖𝐵
fmul01lt1lem2.2 𝑖𝜑
fmul01lt1lem2.3 𝐴 = seq𝐿( · , 𝐵)
fmul01lt1lem2.4 (𝜑𝐿 ∈ ℤ)
fmul01lt1lem2.5 (𝜑𝑀 ∈ (ℤ𝐿))
fmul01lt1lem2.6 ((𝜑𝑖 ∈ (𝐿...𝑀)) → (𝐵𝑖) ∈ ℝ)
fmul01lt1lem2.7 ((𝜑𝑖 ∈ (𝐿...𝑀)) → 0 ≤ (𝐵𝑖))
fmul01lt1lem2.8 ((𝜑𝑖 ∈ (𝐿...𝑀)) → (𝐵𝑖) ≤ 1)
fmul01lt1lem2.9 (𝜑𝐸 ∈ ℝ+)
fmul01lt1lem2.10 (𝜑𝐽 ∈ (𝐿...𝑀))
fmul01lt1lem2.11 (𝜑 → (𝐵𝐽) < 𝐸)
Assertion
Ref Expression
fmul01lt1lem2 (𝜑 → (𝐴𝑀) < 𝐸)
Distinct variable groups:   𝑖,𝐽   𝑖,𝐿   𝑖,𝑀
Allowed substitution hints:   𝜑(𝑖)   𝐴(𝑖)   𝐵(𝑖)   𝐸(𝑖)

Proof of Theorem fmul01lt1lem2
Dummy variables 𝑎 𝑏 𝑐 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmul01lt1lem2.1 . . 3 𝑖𝐵
2 fmul01lt1lem2.2 . . . 4 𝑖𝜑
3 nfv 1992 . . . 4 𝑖 𝐽 = 𝐿
42, 3nfan 1977 . . 3 𝑖(𝜑𝐽 = 𝐿)
5 fmul01lt1lem2.3 . . 3 𝐴 = seq𝐿( · , 𝐵)
6 fmul01lt1lem2.4 . . . 4 (𝜑𝐿 ∈ ℤ)
76adantr 472 . . 3 ((𝜑𝐽 = 𝐿) → 𝐿 ∈ ℤ)
8 fmul01lt1lem2.5 . . . 4 (𝜑𝑀 ∈ (ℤ𝐿))
98adantr 472 . . 3 ((𝜑𝐽 = 𝐿) → 𝑀 ∈ (ℤ𝐿))
10 fmul01lt1lem2.6 . . . 4 ((𝜑𝑖 ∈ (𝐿...𝑀)) → (𝐵𝑖) ∈ ℝ)
1110adantlr 753 . . 3 (((𝜑𝐽 = 𝐿) ∧ 𝑖 ∈ (𝐿...𝑀)) → (𝐵𝑖) ∈ ℝ)
12 fmul01lt1lem2.7 . . . 4 ((𝜑𝑖 ∈ (𝐿...𝑀)) → 0 ≤ (𝐵𝑖))
1312adantlr 753 . . 3 (((𝜑𝐽 = 𝐿) ∧ 𝑖 ∈ (𝐿...𝑀)) → 0 ≤ (𝐵𝑖))
14 fmul01lt1lem2.8 . . . 4 ((𝜑𝑖 ∈ (𝐿...𝑀)) → (𝐵𝑖) ≤ 1)
1514adantlr 753 . . 3 (((𝜑𝐽 = 𝐿) ∧ 𝑖 ∈ (𝐿...𝑀)) → (𝐵𝑖) ≤ 1)
16 fmul01lt1lem2.9 . . . 4 (𝜑𝐸 ∈ ℝ+)
1716adantr 472 . . 3 ((𝜑𝐽 = 𝐿) → 𝐸 ∈ ℝ+)
18 simpr 479 . . . . 5 ((𝜑𝐽 = 𝐿) → 𝐽 = 𝐿)
1918fveq2d 6356 . . . 4 ((𝜑𝐽 = 𝐿) → (𝐵𝐽) = (𝐵𝐿))
20 fmul01lt1lem2.11 . . . . 5 (𝜑 → (𝐵𝐽) < 𝐸)
2120adantr 472 . . . 4 ((𝜑𝐽 = 𝐿) → (𝐵𝐽) < 𝐸)
2219, 21eqbrtrrd 4828 . . 3 ((𝜑𝐽 = 𝐿) → (𝐵𝐿) < 𝐸)
231, 4, 5, 7, 9, 11, 13, 15, 17, 22fmul01lt1lem1 40319 . 2 ((𝜑𝐽 = 𝐿) → (𝐴𝑀) < 𝐸)
245fveq1i 6353 . . 3 (𝐴𝑀) = (seq𝐿( · , 𝐵)‘𝑀)
25 nfv 1992 . . . . . . . . 9 𝑖 𝑎 ∈ (𝐿...𝑀)
262, 25nfan 1977 . . . . . . . 8 𝑖(𝜑𝑎 ∈ (𝐿...𝑀))
27 nfcv 2902 . . . . . . . . . 10 𝑖𝑎
281, 27nffv 6359 . . . . . . . . 9 𝑖(𝐵𝑎)
2928nfel1 2917 . . . . . . . 8 𝑖(𝐵𝑎) ∈ ℝ
3026, 29nfim 1974 . . . . . . 7 𝑖((𝜑𝑎 ∈ (𝐿...𝑀)) → (𝐵𝑎) ∈ ℝ)
31 eleq1w 2822 . . . . . . . . 9 (𝑖 = 𝑎 → (𝑖 ∈ (𝐿...𝑀) ↔ 𝑎 ∈ (𝐿...𝑀)))
3231anbi2d 742 . . . . . . . 8 (𝑖 = 𝑎 → ((𝜑𝑖 ∈ (𝐿...𝑀)) ↔ (𝜑𝑎 ∈ (𝐿...𝑀))))
33 fveq2 6352 . . . . . . . . 9 (𝑖 = 𝑎 → (𝐵𝑖) = (𝐵𝑎))
3433eleq1d 2824 . . . . . . . 8 (𝑖 = 𝑎 → ((𝐵𝑖) ∈ ℝ ↔ (𝐵𝑎) ∈ ℝ))
3532, 34imbi12d 333 . . . . . . 7 (𝑖 = 𝑎 → (((𝜑𝑖 ∈ (𝐿...𝑀)) → (𝐵𝑖) ∈ ℝ) ↔ ((𝜑𝑎 ∈ (𝐿...𝑀)) → (𝐵𝑎) ∈ ℝ)))
3630, 35, 10chvar 2407 . . . . . 6 ((𝜑𝑎 ∈ (𝐿...𝑀)) → (𝐵𝑎) ∈ ℝ)
37 remulcl 10213 . . . . . . 7 ((𝑎 ∈ ℝ ∧ 𝑗 ∈ ℝ) → (𝑎 · 𝑗) ∈ ℝ)
3837adantl 473 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑗 ∈ ℝ)) → (𝑎 · 𝑗) ∈ ℝ)
398, 36, 38seqcl 13015 . . . . 5 (𝜑 → (seq𝐿( · , 𝐵)‘𝑀) ∈ ℝ)
4039adantr 472 . . . 4 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → (seq𝐿( · , 𝐵)‘𝑀) ∈ ℝ)
41 fmul01lt1lem2.10 . . . . . . 7 (𝜑𝐽 ∈ (𝐿...𝑀))
42 elfzuz3 12532 . . . . . . 7 (𝐽 ∈ (𝐿...𝑀) → 𝑀 ∈ (ℤ𝐽))
4341, 42syl 17 . . . . . 6 (𝜑𝑀 ∈ (ℤ𝐽))
44 nfv 1992 . . . . . . . . 9 𝑖 𝑎 ∈ (𝐽...𝑀)
452, 44nfan 1977 . . . . . . . 8 𝑖(𝜑𝑎 ∈ (𝐽...𝑀))
4645, 29nfim 1974 . . . . . . 7 𝑖((𝜑𝑎 ∈ (𝐽...𝑀)) → (𝐵𝑎) ∈ ℝ)
47 eleq1w 2822 . . . . . . . . 9 (𝑖 = 𝑎 → (𝑖 ∈ (𝐽...𝑀) ↔ 𝑎 ∈ (𝐽...𝑀)))
4847anbi2d 742 . . . . . . . 8 (𝑖 = 𝑎 → ((𝜑𝑖 ∈ (𝐽...𝑀)) ↔ (𝜑𝑎 ∈ (𝐽...𝑀))))
4948, 34imbi12d 333 . . . . . . 7 (𝑖 = 𝑎 → (((𝜑𝑖 ∈ (𝐽...𝑀)) → (𝐵𝑖) ∈ ℝ) ↔ ((𝜑𝑎 ∈ (𝐽...𝑀)) → (𝐵𝑎) ∈ ℝ)))
506adantr 472 . . . . . . . . . 10 ((𝜑𝑖 ∈ (𝐽...𝑀)) → 𝐿 ∈ ℤ)
51 eluzelz 11889 . . . . . . . . . . . 12 (𝑀 ∈ (ℤ𝐿) → 𝑀 ∈ ℤ)
528, 51syl 17 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℤ)
5352adantr 472 . . . . . . . . . 10 ((𝜑𝑖 ∈ (𝐽...𝑀)) → 𝑀 ∈ ℤ)
54 elfzelz 12535 . . . . . . . . . . 11 (𝑖 ∈ (𝐽...𝑀) → 𝑖 ∈ ℤ)
5554adantl 473 . . . . . . . . . 10 ((𝜑𝑖 ∈ (𝐽...𝑀)) → 𝑖 ∈ ℤ)
5650, 53, 553jca 1123 . . . . . . . . 9 ((𝜑𝑖 ∈ (𝐽...𝑀)) → (𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑖 ∈ ℤ))
576zred 11674 . . . . . . . . . . . 12 (𝜑𝐿 ∈ ℝ)
5857adantr 472 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (𝐽...𝑀)) → 𝐿 ∈ ℝ)
59 elfzelz 12535 . . . . . . . . . . . . . 14 (𝐽 ∈ (𝐿...𝑀) → 𝐽 ∈ ℤ)
6041, 59syl 17 . . . . . . . . . . . . 13 (𝜑𝐽 ∈ ℤ)
6160zred 11674 . . . . . . . . . . . 12 (𝜑𝐽 ∈ ℝ)
6261adantr 472 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (𝐽...𝑀)) → 𝐽 ∈ ℝ)
6354zred 11674 . . . . . . . . . . . 12 (𝑖 ∈ (𝐽...𝑀) → 𝑖 ∈ ℝ)
6463adantl 473 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (𝐽...𝑀)) → 𝑖 ∈ ℝ)
65 elfzle1 12537 . . . . . . . . . . . . 13 (𝐽 ∈ (𝐿...𝑀) → 𝐿𝐽)
6641, 65syl 17 . . . . . . . . . . . 12 (𝜑𝐿𝐽)
6766adantr 472 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (𝐽...𝑀)) → 𝐿𝐽)
68 elfzle1 12537 . . . . . . . . . . . 12 (𝑖 ∈ (𝐽...𝑀) → 𝐽𝑖)
6968adantl 473 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (𝐽...𝑀)) → 𝐽𝑖)
7058, 62, 64, 67, 69letrd 10386 . . . . . . . . . 10 ((𝜑𝑖 ∈ (𝐽...𝑀)) → 𝐿𝑖)
71 elfzle2 12538 . . . . . . . . . . 11 (𝑖 ∈ (𝐽...𝑀) → 𝑖𝑀)
7271adantl 473 . . . . . . . . . 10 ((𝜑𝑖 ∈ (𝐽...𝑀)) → 𝑖𝑀)
7370, 72jca 555 . . . . . . . . 9 ((𝜑𝑖 ∈ (𝐽...𝑀)) → (𝐿𝑖𝑖𝑀))
74 elfz2 12526 . . . . . . . . 9 (𝑖 ∈ (𝐿...𝑀) ↔ ((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ (𝐿𝑖𝑖𝑀)))
7556, 73, 74sylanbrc 701 . . . . . . . 8 ((𝜑𝑖 ∈ (𝐽...𝑀)) → 𝑖 ∈ (𝐿...𝑀))
7675, 10syldan 488 . . . . . . 7 ((𝜑𝑖 ∈ (𝐽...𝑀)) → (𝐵𝑖) ∈ ℝ)
7746, 49, 76chvar 2407 . . . . . 6 ((𝜑𝑎 ∈ (𝐽...𝑀)) → (𝐵𝑎) ∈ ℝ)
7843, 77, 38seqcl 13015 . . . . 5 (𝜑 → (seq𝐽( · , 𝐵)‘𝑀) ∈ ℝ)
7978adantr 472 . . . 4 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → (seq𝐽( · , 𝐵)‘𝑀) ∈ ℝ)
8016rpred 12065 . . . . 5 (𝜑𝐸 ∈ ℝ)
8180adantr 472 . . . 4 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → 𝐸 ∈ ℝ)
82 remulcl 10213 . . . . . . . . 9 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑎 · 𝑏) ∈ ℝ)
8382adantl 473 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐽 = 𝐿) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) → (𝑎 · 𝑏) ∈ ℝ)
84 simp1 1131 . . . . . . . . . . 11 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ) → 𝑎 ∈ ℝ)
8584recnd 10260 . . . . . . . . . 10 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ) → 𝑎 ∈ ℂ)
86 simp2 1132 . . . . . . . . . . 11 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ) → 𝑏 ∈ ℝ)
8786recnd 10260 . . . . . . . . . 10 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ) → 𝑏 ∈ ℂ)
88 simp3 1133 . . . . . . . . . . 11 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ) → 𝑐 ∈ ℝ)
8988recnd 10260 . . . . . . . . . 10 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ) → 𝑐 ∈ ℂ)
9085, 87, 89mulassd 10255 . . . . . . . . 9 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ) → ((𝑎 · 𝑏) · 𝑐) = (𝑎 · (𝑏 · 𝑐)))
9190adantl 473 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐽 = 𝐿) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ)) → ((𝑎 · 𝑏) · 𝑐) = (𝑎 · (𝑏 · 𝑐)))
9260zcnd 11675 . . . . . . . . . . . 12 (𝜑𝐽 ∈ ℂ)
93 1cnd 10248 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℂ)
9492, 93npcand 10588 . . . . . . . . . . 11 (𝜑 → ((𝐽 − 1) + 1) = 𝐽)
9594fveq2d 6356 . . . . . . . . . 10 (𝜑 → (ℤ‘((𝐽 − 1) + 1)) = (ℤ𝐽))
9643, 95eleqtrrd 2842 . . . . . . . . 9 (𝜑𝑀 ∈ (ℤ‘((𝐽 − 1) + 1)))
9796adantr 472 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → 𝑀 ∈ (ℤ‘((𝐽 − 1) + 1)))
986adantr 472 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → 𝐿 ∈ ℤ)
9960adantr 472 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → 𝐽 ∈ ℤ)
100 1zzd 11600 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → 1 ∈ ℤ)
10199, 100zsubcld 11679 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → (𝐽 − 1) ∈ ℤ)
102 simpr 479 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → ¬ 𝐽 = 𝐿)
103 eqcom 2767 . . . . . . . . . . . 12 (𝐽 = 𝐿𝐿 = 𝐽)
104102, 103sylnib 317 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → ¬ 𝐿 = 𝐽)
10557, 61leloed 10372 . . . . . . . . . . . . 13 (𝜑 → (𝐿𝐽 ↔ (𝐿 < 𝐽𝐿 = 𝐽)))
10666, 105mpbid 222 . . . . . . . . . . . 12 (𝜑 → (𝐿 < 𝐽𝐿 = 𝐽))
107106adantr 472 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → (𝐿 < 𝐽𝐿 = 𝐽))
108 orel2 397 . . . . . . . . . . 11 𝐿 = 𝐽 → ((𝐿 < 𝐽𝐿 = 𝐽) → 𝐿 < 𝐽))
109104, 107, 108sylc 65 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → 𝐿 < 𝐽)
110 zltlem1 11622 . . . . . . . . . . . 12 ((𝐿 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝐿 < 𝐽𝐿 ≤ (𝐽 − 1)))
1116, 60, 110syl2anc 696 . . . . . . . . . . 11 (𝜑 → (𝐿 < 𝐽𝐿 ≤ (𝐽 − 1)))
112111adantr 472 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → (𝐿 < 𝐽𝐿 ≤ (𝐽 − 1)))
113109, 112mpbid 222 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → 𝐿 ≤ (𝐽 − 1))
114 eluz2 11885 . . . . . . . . 9 ((𝐽 − 1) ∈ (ℤ𝐿) ↔ (𝐿 ∈ ℤ ∧ (𝐽 − 1) ∈ ℤ ∧ 𝐿 ≤ (𝐽 − 1)))
11598, 101, 113, 114syl3anbrc 1429 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → (𝐽 − 1) ∈ (ℤ𝐿))
116 nfv 1992 . . . . . . . . . . . 12 𝑖 ¬ 𝐽 = 𝐿
1172, 116nfan 1977 . . . . . . . . . . 11 𝑖(𝜑 ∧ ¬ 𝐽 = 𝐿)
118117, 25nfan 1977 . . . . . . . . . 10 𝑖((𝜑 ∧ ¬ 𝐽 = 𝐿) ∧ 𝑎 ∈ (𝐿...𝑀))
119118, 29nfim 1974 . . . . . . . . 9 𝑖(((𝜑 ∧ ¬ 𝐽 = 𝐿) ∧ 𝑎 ∈ (𝐿...𝑀)) → (𝐵𝑎) ∈ ℝ)
12031anbi2d 742 . . . . . . . . . 10 (𝑖 = 𝑎 → (((𝜑 ∧ ¬ 𝐽 = 𝐿) ∧ 𝑖 ∈ (𝐿...𝑀)) ↔ ((𝜑 ∧ ¬ 𝐽 = 𝐿) ∧ 𝑎 ∈ (𝐿...𝑀))))
121120, 34imbi12d 333 . . . . . . . . 9 (𝑖 = 𝑎 → ((((𝜑 ∧ ¬ 𝐽 = 𝐿) ∧ 𝑖 ∈ (𝐿...𝑀)) → (𝐵𝑖) ∈ ℝ) ↔ (((𝜑 ∧ ¬ 𝐽 = 𝐿) ∧ 𝑎 ∈ (𝐿...𝑀)) → (𝐵𝑎) ∈ ℝ)))
12210adantlr 753 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐽 = 𝐿) ∧ 𝑖 ∈ (𝐿...𝑀)) → (𝐵𝑖) ∈ ℝ)
123119, 121, 122chvar 2407 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐽 = 𝐿) ∧ 𝑎 ∈ (𝐿...𝑀)) → (𝐵𝑎) ∈ ℝ)
12483, 91, 97, 115, 123seqsplit 13028 . . . . . . 7 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → (seq𝐿( · , 𝐵)‘𝑀) = ((seq𝐿( · , 𝐵)‘(𝐽 − 1)) · (seq((𝐽 − 1) + 1)( · , 𝐵)‘𝑀)))
12594adantr 472 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → ((𝐽 − 1) + 1) = 𝐽)
126125seqeq1d 13001 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → seq((𝐽 − 1) + 1)( · , 𝐵) = seq𝐽( · , 𝐵))
127126fveq1d 6354 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → (seq((𝐽 − 1) + 1)( · , 𝐵)‘𝑀) = (seq𝐽( · , 𝐵)‘𝑀))
128127oveq2d 6829 . . . . . . 7 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → ((seq𝐿( · , 𝐵)‘(𝐽 − 1)) · (seq((𝐽 − 1) + 1)( · , 𝐵)‘𝑀)) = ((seq𝐿( · , 𝐵)‘(𝐽 − 1)) · (seq𝐽( · , 𝐵)‘𝑀)))
129124, 128eqtrd 2794 . . . . . 6 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → (seq𝐿( · , 𝐵)‘𝑀) = ((seq𝐿( · , 𝐵)‘(𝐽 − 1)) · (seq𝐽( · , 𝐵)‘𝑀)))
130 nfv 1992 . . . . . . . . . . 11 𝑖 𝑎 ∈ (𝐿...(𝐽 − 1))
131117, 130nfan 1977 . . . . . . . . . 10 𝑖((𝜑 ∧ ¬ 𝐽 = 𝐿) ∧ 𝑎 ∈ (𝐿...(𝐽 − 1)))
132131, 29nfim 1974 . . . . . . . . 9 𝑖(((𝜑 ∧ ¬ 𝐽 = 𝐿) ∧ 𝑎 ∈ (𝐿...(𝐽 − 1))) → (𝐵𝑎) ∈ ℝ)
133 eleq1w 2822 . . . . . . . . . . 11 (𝑖 = 𝑎 → (𝑖 ∈ (𝐿...(𝐽 − 1)) ↔ 𝑎 ∈ (𝐿...(𝐽 − 1))))
134133anbi2d 742 . . . . . . . . . 10 (𝑖 = 𝑎 → (((𝜑 ∧ ¬ 𝐽 = 𝐿) ∧ 𝑖 ∈ (𝐿...(𝐽 − 1))) ↔ ((𝜑 ∧ ¬ 𝐽 = 𝐿) ∧ 𝑎 ∈ (𝐿...(𝐽 − 1)))))
135134, 34imbi12d 333 . . . . . . . . 9 (𝑖 = 𝑎 → ((((𝜑 ∧ ¬ 𝐽 = 𝐿) ∧ 𝑖 ∈ (𝐿...(𝐽 − 1))) → (𝐵𝑖) ∈ ℝ) ↔ (((𝜑 ∧ ¬ 𝐽 = 𝐿) ∧ 𝑎 ∈ (𝐿...(𝐽 − 1))) → (𝐵𝑎) ∈ ℝ)))
1366adantr 472 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (𝐿...(𝐽 − 1))) → 𝐿 ∈ ℤ)
13752adantr 472 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (𝐿...(𝐽 − 1))) → 𝑀 ∈ ℤ)
138 elfzelz 12535 . . . . . . . . . . . . . 14 (𝑖 ∈ (𝐿...(𝐽 − 1)) → 𝑖 ∈ ℤ)
139138adantl 473 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (𝐿...(𝐽 − 1))) → 𝑖 ∈ ℤ)
140136, 137, 1393jca 1123 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (𝐿...(𝐽 − 1))) → (𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑖 ∈ ℤ))
141 elfzle1 12537 . . . . . . . . . . . . . 14 (𝑖 ∈ (𝐿...(𝐽 − 1)) → 𝐿𝑖)
142141adantl 473 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (𝐿...(𝐽 − 1))) → 𝐿𝑖)
143138zred 11674 . . . . . . . . . . . . . . 15 (𝑖 ∈ (𝐿...(𝐽 − 1)) → 𝑖 ∈ ℝ)
144143adantl 473 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (𝐿...(𝐽 − 1))) → 𝑖 ∈ ℝ)
14561adantr 472 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (𝐿...(𝐽 − 1))) → 𝐽 ∈ ℝ)
14652zred 11674 . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ ℝ)
147146adantr 472 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (𝐿...(𝐽 − 1))) → 𝑀 ∈ ℝ)
148 1red 10247 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ∈ ℝ)
14961, 148resubcld 10650 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐽 − 1) ∈ ℝ)
150149adantr 472 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (𝐿...(𝐽 − 1))) → (𝐽 − 1) ∈ ℝ)
151 elfzle2 12538 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (𝐿...(𝐽 − 1)) → 𝑖 ≤ (𝐽 − 1))
152151adantl 473 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (𝐿...(𝐽 − 1))) → 𝑖 ≤ (𝐽 − 1))
15361lem1d 11149 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐽 − 1) ≤ 𝐽)
154153adantr 472 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (𝐿...(𝐽 − 1))) → (𝐽 − 1) ≤ 𝐽)
155144, 150, 145, 152, 154letrd 10386 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (𝐿...(𝐽 − 1))) → 𝑖𝐽)
156 elfzle2 12538 . . . . . . . . . . . . . . . 16 (𝐽 ∈ (𝐿...𝑀) → 𝐽𝑀)
15741, 156syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐽𝑀)
158157adantr 472 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (𝐿...(𝐽 − 1))) → 𝐽𝑀)
159144, 145, 147, 155, 158letrd 10386 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (𝐿...(𝐽 − 1))) → 𝑖𝑀)
160142, 159jca 555 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (𝐿...(𝐽 − 1))) → (𝐿𝑖𝑖𝑀))
161140, 160, 74sylanbrc 701 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (𝐿...(𝐽 − 1))) → 𝑖 ∈ (𝐿...𝑀))
162161, 10syldan 488 . . . . . . . . . 10 ((𝜑𝑖 ∈ (𝐿...(𝐽 − 1))) → (𝐵𝑖) ∈ ℝ)
163162adantlr 753 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐽 = 𝐿) ∧ 𝑖 ∈ (𝐿...(𝐽 − 1))) → (𝐵𝑖) ∈ ℝ)
164132, 135, 163chvar 2407 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐽 = 𝐿) ∧ 𝑎 ∈ (𝐿...(𝐽 − 1))) → (𝐵𝑎) ∈ ℝ)
16537adantl 473 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐽 = 𝐿) ∧ (𝑎 ∈ ℝ ∧ 𝑗 ∈ ℝ)) → (𝑎 · 𝑗) ∈ ℝ)
166115, 164, 165seqcl 13015 . . . . . . 7 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → (seq𝐿( · , 𝐵)‘(𝐽 − 1)) ∈ ℝ)
167 1red 10247 . . . . . . 7 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → 1 ∈ ℝ)
168 eqid 2760 . . . . . . . . 9 seq𝐽( · , 𝐵) = seq𝐽( · , 𝐵)
16943adantr 472 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → 𝑀 ∈ (ℤ𝐽))
170 eluzfz2 12542 . . . . . . . . . . 11 (𝑀 ∈ (ℤ𝐽) → 𝑀 ∈ (𝐽...𝑀))
17143, 170syl 17 . . . . . . . . . 10 (𝜑𝑀 ∈ (𝐽...𝑀))
172171adantr 472 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → 𝑀 ∈ (𝐽...𝑀))
17376adantlr 753 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐽 = 𝐿) ∧ 𝑖 ∈ (𝐽...𝑀)) → (𝐵𝑖) ∈ ℝ)
17475, 12syldan 488 . . . . . . . . . 10 ((𝜑𝑖 ∈ (𝐽...𝑀)) → 0 ≤ (𝐵𝑖))
175174adantlr 753 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐽 = 𝐿) ∧ 𝑖 ∈ (𝐽...𝑀)) → 0 ≤ (𝐵𝑖))
17675, 14syldan 488 . . . . . . . . . 10 ((𝜑𝑖 ∈ (𝐽...𝑀)) → (𝐵𝑖) ≤ 1)
177176adantlr 753 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐽 = 𝐿) ∧ 𝑖 ∈ (𝐽...𝑀)) → (𝐵𝑖) ≤ 1)
1781, 117, 168, 99, 169, 172, 173, 175, 177fmul01 40315 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → (0 ≤ (seq𝐽( · , 𝐵)‘𝑀) ∧ (seq𝐽( · , 𝐵)‘𝑀) ≤ 1))
179178simpld 477 . . . . . . 7 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → 0 ≤ (seq𝐽( · , 𝐵)‘𝑀))
180 eqid 2760 . . . . . . . . 9 seq𝐿( · , 𝐵) = seq𝐿( · , 𝐵)
1818adantr 472 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → 𝑀 ∈ (ℤ𝐿))
182 1zzd 11600 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ ℤ)
18360, 182zsubcld 11679 . . . . . . . . . . . 12 (𝜑 → (𝐽 − 1) ∈ ℤ)
1846, 52, 1833jca 1123 . . . . . . . . . . 11 (𝜑 → (𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝐽 − 1) ∈ ℤ))
185184adantr 472 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → (𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝐽 − 1) ∈ ℤ))
186149, 61, 1463jca 1123 . . . . . . . . . . . . 13 (𝜑 → ((𝐽 − 1) ∈ ℝ ∧ 𝐽 ∈ ℝ ∧ 𝑀 ∈ ℝ))
187186adantr 472 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → ((𝐽 − 1) ∈ ℝ ∧ 𝐽 ∈ ℝ ∧ 𝑀 ∈ ℝ))
18861adantr 472 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → 𝐽 ∈ ℝ)
189188lem1d 11149 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → (𝐽 − 1) ≤ 𝐽)
190157adantr 472 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → 𝐽𝑀)
191189, 190jca 555 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → ((𝐽 − 1) ≤ 𝐽𝐽𝑀))
192 letr 10323 . . . . . . . . . . . 12 (((𝐽 − 1) ∈ ℝ ∧ 𝐽 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (((𝐽 − 1) ≤ 𝐽𝐽𝑀) → (𝐽 − 1) ≤ 𝑀))
193187, 191, 192sylc 65 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → (𝐽 − 1) ≤ 𝑀)
194113, 193jca 555 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → (𝐿 ≤ (𝐽 − 1) ∧ (𝐽 − 1) ≤ 𝑀))
195 elfz2 12526 . . . . . . . . . 10 ((𝐽 − 1) ∈ (𝐿...𝑀) ↔ ((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝐽 − 1) ∈ ℤ) ∧ (𝐿 ≤ (𝐽 − 1) ∧ (𝐽 − 1) ≤ 𝑀)))
196185, 194, 195sylanbrc 701 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → (𝐽 − 1) ∈ (𝐿...𝑀))
19712adantlr 753 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐽 = 𝐿) ∧ 𝑖 ∈ (𝐿...𝑀)) → 0 ≤ (𝐵𝑖))
19814adantlr 753 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐽 = 𝐿) ∧ 𝑖 ∈ (𝐿...𝑀)) → (𝐵𝑖) ≤ 1)
1991, 117, 180, 98, 181, 196, 122, 197, 198fmul01 40315 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → (0 ≤ (seq𝐿( · , 𝐵)‘(𝐽 − 1)) ∧ (seq𝐿( · , 𝐵)‘(𝐽 − 1)) ≤ 1))
200199simprd 482 . . . . . . 7 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → (seq𝐿( · , 𝐵)‘(𝐽 − 1)) ≤ 1)
201166, 167, 79, 179, 200lemul1ad 11155 . . . . . 6 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → ((seq𝐿( · , 𝐵)‘(𝐽 − 1)) · (seq𝐽( · , 𝐵)‘𝑀)) ≤ (1 · (seq𝐽( · , 𝐵)‘𝑀)))
202129, 201eqbrtrd 4826 . . . . 5 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → (seq𝐿( · , 𝐵)‘𝑀) ≤ (1 · (seq𝐽( · , 𝐵)‘𝑀)))
20379recnd 10260 . . . . . 6 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → (seq𝐽( · , 𝐵)‘𝑀) ∈ ℂ)
204203mulid2d 10250 . . . . 5 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → (1 · (seq𝐽( · , 𝐵)‘𝑀)) = (seq𝐽( · , 𝐵)‘𝑀))
205202, 204breqtrd 4830 . . . 4 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → (seq𝐿( · , 𝐵)‘𝑀) ≤ (seq𝐽( · , 𝐵)‘𝑀))
2061, 2, 168, 60, 43, 76, 174, 176, 16, 20fmul01lt1lem1 40319 . . . . 5 (𝜑 → (seq𝐽( · , 𝐵)‘𝑀) < 𝐸)
207206adantr 472 . . . 4 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → (seq𝐽( · , 𝐵)‘𝑀) < 𝐸)
20840, 79, 81, 205, 207lelttrd 10387 . . 3 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → (seq𝐿( · , 𝐵)‘𝑀) < 𝐸)
20924, 208syl5eqbr 4839 . 2 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → (𝐴𝑀) < 𝐸)
21023, 209pm2.61dan 867 1 (𝜑 → (𝐴𝑀) < 𝐸)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383  w3a 1072   = wceq 1632  wnf 1857  wcel 2139  wnfc 2889   class class class wbr 4804  cfv 6049  (class class class)co 6813  cr 10127  0cc0 10128  1c1 10129   + caddc 10131   · cmul 10133   < clt 10266  cle 10267  cmin 10458  cz 11569  cuz 11879  +crp 12025  ...cfz 12519  seqcseq 12995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-n0 11485  df-z 11570  df-uz 11880  df-rp 12026  df-fz 12520  df-fzo 12660  df-seq 12996
This theorem is referenced by:  fmul01lt1  40321
  Copyright terms: Public domain W3C validator