MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnasrn Structured version   Visualization version   GIF version

Theorem fnasrn 6575
Description: A function expressed as the range of another function. (Contributed by Mario Carneiro, 22-Jun-2013.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
dfmpt.1 𝐵 ∈ V
Assertion
Ref Expression
fnasrn (𝑥𝐴𝐵) = ran (𝑥𝐴 ↦ ⟨𝑥, 𝐵⟩)

Proof of Theorem fnasrn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfmpt.1 . . 3 𝐵 ∈ V
21dfmpt 6574 . 2 (𝑥𝐴𝐵) = 𝑥𝐴 {⟨𝑥, 𝐵⟩}
3 eqid 2760 . . . . 5 (𝑥𝐴 ↦ ⟨𝑥, 𝐵⟩) = (𝑥𝐴 ↦ ⟨𝑥, 𝐵⟩)
43rnmpt 5526 . . . 4 ran (𝑥𝐴 ↦ ⟨𝑥, 𝐵⟩) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = ⟨𝑥, 𝐵⟩}
5 velsn 4337 . . . . . 6 (𝑦 ∈ {⟨𝑥, 𝐵⟩} ↔ 𝑦 = ⟨𝑥, 𝐵⟩)
65rexbii 3179 . . . . 5 (∃𝑥𝐴 𝑦 ∈ {⟨𝑥, 𝐵⟩} ↔ ∃𝑥𝐴 𝑦 = ⟨𝑥, 𝐵⟩)
76abbii 2877 . . . 4 {𝑦 ∣ ∃𝑥𝐴 𝑦 ∈ {⟨𝑥, 𝐵⟩}} = {𝑦 ∣ ∃𝑥𝐴 𝑦 = ⟨𝑥, 𝐵⟩}
84, 7eqtr4i 2785 . . 3 ran (𝑥𝐴 ↦ ⟨𝑥, 𝐵⟩) = {𝑦 ∣ ∃𝑥𝐴 𝑦 ∈ {⟨𝑥, 𝐵⟩}}
9 df-iun 4674 . . 3 𝑥𝐴 {⟨𝑥, 𝐵⟩} = {𝑦 ∣ ∃𝑥𝐴 𝑦 ∈ {⟨𝑥, 𝐵⟩}}
108, 9eqtr4i 2785 . 2 ran (𝑥𝐴 ↦ ⟨𝑥, 𝐵⟩) = 𝑥𝐴 {⟨𝑥, 𝐵⟩}
112, 10eqtr4i 2785 1 (𝑥𝐴𝐵) = ran (𝑥𝐴 ↦ ⟨𝑥, 𝐵⟩)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1632  wcel 2139  {cab 2746  wrex 3051  Vcvv 3340  {csn 4321  cop 4327   ciun 4672  cmpt 4881  ran crn 5267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pr 5055
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056
This theorem is referenced by:  resfunexg  6644  idref  6663  gruf  9845
  Copyright terms: Public domain W3C validator