Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnbrafvb Structured version   Visualization version   GIF version

Theorem fnbrafvb 40568
Description: Equivalence of function value and binary relation, analogous to fnbrfvb 6203. (Contributed by Alexander van der Vekens, 25-May-2017.)
Assertion
Ref Expression
fnbrafvb ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹'''𝐵) = 𝐶𝐵𝐹𝐶))

Proof of Theorem fnbrafvb
StepHypRef Expression
1 fndm 5958 . . . . . 6 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
2 eleq2 2687 . . . . . . . 8 (𝐴 = dom 𝐹 → (𝐵𝐴𝐵 ∈ dom 𝐹))
32eqcoms 2629 . . . . . . 7 (dom 𝐹 = 𝐴 → (𝐵𝐴𝐵 ∈ dom 𝐹))
43biimpd 219 . . . . . 6 (dom 𝐹 = 𝐴 → (𝐵𝐴𝐵 ∈ dom 𝐹))
51, 4syl 17 . . . . 5 (𝐹 Fn 𝐴 → (𝐵𝐴𝐵 ∈ dom 𝐹))
65imp 445 . . . 4 ((𝐹 Fn 𝐴𝐵𝐴) → 𝐵 ∈ dom 𝐹)
7 snssi 4315 . . . . . . 7 (𝐵𝐴 → {𝐵} ⊆ 𝐴)
87adantl 482 . . . . . 6 ((𝐹 Fn 𝐴𝐵𝐴) → {𝐵} ⊆ 𝐴)
9 fnssresb 5971 . . . . . . 7 (𝐹 Fn 𝐴 → ((𝐹 ↾ {𝐵}) Fn {𝐵} ↔ {𝐵} ⊆ 𝐴))
109adantr 481 . . . . . 6 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹 ↾ {𝐵}) Fn {𝐵} ↔ {𝐵} ⊆ 𝐴))
118, 10mpbird 247 . . . . 5 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐹 ↾ {𝐵}) Fn {𝐵})
12 fnfun 5956 . . . . 5 ((𝐹 ↾ {𝐵}) Fn {𝐵} → Fun (𝐹 ↾ {𝐵}))
1311, 12syl 17 . . . 4 ((𝐹 Fn 𝐴𝐵𝐴) → Fun (𝐹 ↾ {𝐵}))
14 df-dfat 40530 . . . . 5 (𝐹 defAt 𝐵 ↔ (𝐵 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐵})))
15 afvfundmfveq 40552 . . . . 5 (𝐹 defAt 𝐵 → (𝐹'''𝐵) = (𝐹𝐵))
1614, 15sylbir 225 . . . 4 ((𝐵 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐵})) → (𝐹'''𝐵) = (𝐹𝐵))
176, 13, 16syl2anc 692 . . 3 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐹'''𝐵) = (𝐹𝐵))
1817eqeq1d 2623 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹'''𝐵) = 𝐶 ↔ (𝐹𝐵) = 𝐶))
19 fnbrfvb 6203 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹𝐵) = 𝐶𝐵𝐹𝐶))
2018, 19bitrd 268 1 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹'''𝐵) = 𝐶𝐵𝐹𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wss 3560  {csn 4155   class class class wbr 4623  dom cdm 5084  cres 5086  Fun wfun 5851   Fn wfn 5852  cfv 5857   defAt wdfat 40527  '''cafv 40528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pr 4877
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2913  df-rex 2914  df-rab 2917  df-v 3192  df-sbc 3423  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-br 4624  df-opab 4684  df-id 4999  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-res 5096  df-iota 5820  df-fun 5859  df-fn 5860  df-fv 5865  df-dfat 40530  df-afv 40531
This theorem is referenced by:  fnopafvb  40569  funbrafvb  40570  dfafn5a  40574
  Copyright terms: Public domain W3C validator