MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fncnv Structured version   Visualization version   GIF version

Theorem fncnv 5925
Description: Single-rootedness (see funcnv 5921) of a class cut down by a Cartesian product. (Contributed by NM, 5-Mar-2007.)
Assertion
Ref Expression
fncnv ((𝑅 ∩ (𝐴 × 𝐵)) Fn 𝐵 ↔ ∀𝑦𝐵 ∃!𝑥𝐴 𝑥𝑅𝑦)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦

Proof of Theorem fncnv
StepHypRef Expression
1 df-fn 5855 . 2 ((𝑅 ∩ (𝐴 × 𝐵)) Fn 𝐵 ↔ (Fun (𝑅 ∩ (𝐴 × 𝐵)) ∧ dom (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵))
2 df-rn 5090 . . . 4 ran (𝑅 ∩ (𝐴 × 𝐵)) = dom (𝑅 ∩ (𝐴 × 𝐵))
32eqeq1i 2626 . . 3 (ran (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵 ↔ dom (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵)
43anbi2i 729 . 2 ((Fun (𝑅 ∩ (𝐴 × 𝐵)) ∧ ran (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵) ↔ (Fun (𝑅 ∩ (𝐴 × 𝐵)) ∧ dom (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵))
5 rninxp 5537 . . . . 5 (ran (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵 ↔ ∀𝑦𝐵𝑥𝐴 𝑥𝑅𝑦)
65anbi1i 730 . . . 4 ((ran (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵 ∧ ∀𝑦𝐵 ∃*𝑥𝐴 𝑥𝑅𝑦) ↔ (∀𝑦𝐵𝑥𝐴 𝑥𝑅𝑦 ∧ ∀𝑦𝐵 ∃*𝑥𝐴 𝑥𝑅𝑦))
7 funcnv 5921 . . . . . 6 (Fun (𝑅 ∩ (𝐴 × 𝐵)) ↔ ∀𝑦 ∈ ran (𝑅 ∩ (𝐴 × 𝐵))∃*𝑥 𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦)
8 raleq 3130 . . . . . . 7 (ran (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵 → (∀𝑦 ∈ ran (𝑅 ∩ (𝐴 × 𝐵))∃*𝑥 𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 ↔ ∀𝑦𝐵 ∃*𝑥 𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦))
9 biimt 350 . . . . . . . . 9 (𝑦𝐵 → (∃*𝑥𝐴 𝑥𝑅𝑦 ↔ (𝑦𝐵 → ∃*𝑥𝐴 𝑥𝑅𝑦)))
10 moanimv 2530 . . . . . . . . . 10 (∃*𝑥(𝑦𝐵 ∧ (𝑥𝐴𝑥𝑅𝑦)) ↔ (𝑦𝐵 → ∃*𝑥(𝑥𝐴𝑥𝑅𝑦)))
11 brinxp2 5146 . . . . . . . . . . . 12 (𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 ↔ (𝑥𝐴𝑦𝐵𝑥𝑅𝑦))
12 3anan12 1049 . . . . . . . . . . . 12 ((𝑥𝐴𝑦𝐵𝑥𝑅𝑦) ↔ (𝑦𝐵 ∧ (𝑥𝐴𝑥𝑅𝑦)))
1311, 12bitri 264 . . . . . . . . . . 11 (𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 ↔ (𝑦𝐵 ∧ (𝑥𝐴𝑥𝑅𝑦)))
1413mobii 2492 . . . . . . . . . 10 (∃*𝑥 𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 ↔ ∃*𝑥(𝑦𝐵 ∧ (𝑥𝐴𝑥𝑅𝑦)))
15 df-rmo 2915 . . . . . . . . . . 11 (∃*𝑥𝐴 𝑥𝑅𝑦 ↔ ∃*𝑥(𝑥𝐴𝑥𝑅𝑦))
1615imbi2i 326 . . . . . . . . . 10 ((𝑦𝐵 → ∃*𝑥𝐴 𝑥𝑅𝑦) ↔ (𝑦𝐵 → ∃*𝑥(𝑥𝐴𝑥𝑅𝑦)))
1710, 14, 163bitr4i 292 . . . . . . . . 9 (∃*𝑥 𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 ↔ (𝑦𝐵 → ∃*𝑥𝐴 𝑥𝑅𝑦))
189, 17syl6rbbr 279 . . . . . . . 8 (𝑦𝐵 → (∃*𝑥 𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 ↔ ∃*𝑥𝐴 𝑥𝑅𝑦))
1918ralbiia 2974 . . . . . . 7 (∀𝑦𝐵 ∃*𝑥 𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 ↔ ∀𝑦𝐵 ∃*𝑥𝐴 𝑥𝑅𝑦)
208, 19syl6bb 276 . . . . . 6 (ran (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵 → (∀𝑦 ∈ ran (𝑅 ∩ (𝐴 × 𝐵))∃*𝑥 𝑥(𝑅 ∩ (𝐴 × 𝐵))𝑦 ↔ ∀𝑦𝐵 ∃*𝑥𝐴 𝑥𝑅𝑦))
217, 20syl5bb 272 . . . . 5 (ran (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵 → (Fun (𝑅 ∩ (𝐴 × 𝐵)) ↔ ∀𝑦𝐵 ∃*𝑥𝐴 𝑥𝑅𝑦))
2221pm5.32i 668 . . . 4 ((ran (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵 ∧ Fun (𝑅 ∩ (𝐴 × 𝐵))) ↔ (ran (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵 ∧ ∀𝑦𝐵 ∃*𝑥𝐴 𝑥𝑅𝑦))
23 r19.26 3058 . . . 4 (∀𝑦𝐵 (∃𝑥𝐴 𝑥𝑅𝑦 ∧ ∃*𝑥𝐴 𝑥𝑅𝑦) ↔ (∀𝑦𝐵𝑥𝐴 𝑥𝑅𝑦 ∧ ∀𝑦𝐵 ∃*𝑥𝐴 𝑥𝑅𝑦))
246, 22, 233bitr4i 292 . . 3 ((ran (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵 ∧ Fun (𝑅 ∩ (𝐴 × 𝐵))) ↔ ∀𝑦𝐵 (∃𝑥𝐴 𝑥𝑅𝑦 ∧ ∃*𝑥𝐴 𝑥𝑅𝑦))
25 ancom 466 . . 3 ((Fun (𝑅 ∩ (𝐴 × 𝐵)) ∧ ran (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵) ↔ (ran (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵 ∧ Fun (𝑅 ∩ (𝐴 × 𝐵))))
26 reu5 3151 . . . 4 (∃!𝑥𝐴 𝑥𝑅𝑦 ↔ (∃𝑥𝐴 𝑥𝑅𝑦 ∧ ∃*𝑥𝐴 𝑥𝑅𝑦))
2726ralbii 2975 . . 3 (∀𝑦𝐵 ∃!𝑥𝐴 𝑥𝑅𝑦 ↔ ∀𝑦𝐵 (∃𝑥𝐴 𝑥𝑅𝑦 ∧ ∃*𝑥𝐴 𝑥𝑅𝑦))
2824, 25, 273bitr4i 292 . 2 ((Fun (𝑅 ∩ (𝐴 × 𝐵)) ∧ ran (𝑅 ∩ (𝐴 × 𝐵)) = 𝐵) ↔ ∀𝑦𝐵 ∃!𝑥𝐴 𝑥𝑅𝑦)
291, 4, 283bitr2i 288 1 ((𝑅 ∩ (𝐴 × 𝐵)) Fn 𝐵 ↔ ∀𝑦𝐵 ∃!𝑥𝐴 𝑥𝑅𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  ∃*wmo 2470  wral 2907  wrex 2908  ∃!wreu 2909  ∃*wrmo 2910  cin 3558   class class class wbr 4618   × cxp 5077  ccnv 5078  dom cdm 5079  ran crn 5080  Fun wfun 5846   Fn wfn 5847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pr 4872
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-sn 4154  df-pr 4156  df-op 4160  df-br 4619  df-opab 4679  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-fun 5854  df-fn 5855
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator