MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fncnvimaeqv Structured version   Visualization version   GIF version

Theorem fncnvimaeqv 16982
Description: The inverse images of the universal class V under functions on the universal class V are the universal class V itself. (Proposed by Mario Carneiro, 7-Mar-2020.) (Contributed by AV, 7-Mar-2020.)
Assertion
Ref Expression
fncnvimaeqv (𝐹 Fn V → (𝐹 “ V) = V)

Proof of Theorem fncnvimaeqv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fncnvima2 6504 . 2 (𝐹 Fn V → (𝐹 “ V) = {𝑦 ∈ V ∣ (𝐹𝑦) ∈ V})
2 fvexd 6366 . . . . 5 (𝐹 Fn V → (𝐹𝑥) ∈ V)
32biantrud 529 . . . 4 (𝐹 Fn V → (𝑥 ∈ V ↔ (𝑥 ∈ V ∧ (𝐹𝑥) ∈ V)))
4 fveq2 6354 . . . . . 6 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
54eleq1d 2825 . . . . 5 (𝑦 = 𝑥 → ((𝐹𝑦) ∈ V ↔ (𝐹𝑥) ∈ V))
65elrab 3505 . . . 4 (𝑥 ∈ {𝑦 ∈ V ∣ (𝐹𝑦) ∈ V} ↔ (𝑥 ∈ V ∧ (𝐹𝑥) ∈ V))
73, 6syl6rbbr 279 . . 3 (𝐹 Fn V → (𝑥 ∈ {𝑦 ∈ V ∣ (𝐹𝑦) ∈ V} ↔ 𝑥 ∈ V))
87eqrdv 2759 . 2 (𝐹 Fn V → {𝑦 ∈ V ∣ (𝐹𝑦) ∈ V} = V)
91, 8eqtrd 2795 1 (𝐹 Fn V → (𝐹 “ V) = V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2140  {crab 3055  Vcvv 3341  ccnv 5266  cima 5270   Fn wfn 6045  cfv 6050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-sep 4934  ax-nul 4942  ax-pr 5056
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3343  df-sbc 3578  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-nul 4060  df-if 4232  df-sn 4323  df-pr 4325  df-op 4329  df-uni 4590  df-br 4806  df-opab 4866  df-id 5175  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-iota 6013  df-fun 6052  df-fn 6053  df-fv 6058
This theorem is referenced by:  bascnvimaeqv  16983
  Copyright terms: Public domain W3C validator