MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fncpn Structured version   Visualization version   GIF version

Theorem fncpn 23915
Description: The Cn object is a function. (Contributed by Stefan O'Rear, 16-Nov-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
Assertion
Ref Expression
fncpn (𝑆 ⊆ ℂ → (Cn𝑆) Fn ℕ0)

Proof of Theorem fncpn
Dummy variables 𝑓 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 6842 . . . 4 (ℂ ↑pm 𝑆) ∈ V
21rabex 4964 . . 3 {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓cn→ℂ)} ∈ V
3 eqid 2760 . . 3 (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓cn→ℂ)}) = (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓cn→ℂ)})
42, 3fnmpti 6183 . 2 (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓cn→ℂ)}) Fn ℕ0
5 cpnfval 23914 . . 3 (𝑆 ⊆ ℂ → (Cn𝑆) = (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓cn→ℂ)}))
65fneq1d 6142 . 2 (𝑆 ⊆ ℂ → ((Cn𝑆) Fn ℕ0 ↔ (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓cn→ℂ)}) Fn ℕ0))
74, 6mpbiri 248 1 (𝑆 ⊆ ℂ → (Cn𝑆) Fn ℕ0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2139  {crab 3054  wss 3715  cmpt 4881  dom cdm 5266   Fn wfn 6044  cfv 6049  (class class class)co 6814  pm cpm 8026  cc 10146  0cn0 11504  cnccncf 22900   D𝑛 cdvn 23847  Cnccpn 23848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-i2m1 10216  ax-1ne0 10217  ax-rrecex 10220  ax-cnre 10221
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6817  df-om 7232  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-nn 11233  df-n0 11505  df-cpn 23852
This theorem is referenced by:  cpncn  23918  cpnres  23919  plycpn  24263  aalioulem3  24308
  Copyright terms: Public domain W3C validator