Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnejoin1 Structured version   Visualization version   GIF version

Theorem fnejoin1 33718
Description: Join of equivalence classes under the fineness relation-part one. (Contributed by Jeff Hankins, 8-Oct-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
fnejoin1 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → 𝐴Fneif(𝑆 = ∅, {𝑋}, 𝑆))
Distinct variable groups:   𝑦,𝐴   𝑦,𝑆   𝑦,𝑋
Allowed substitution hint:   𝑉(𝑦)

Proof of Theorem fnejoin1
StepHypRef Expression
1 elssuni 4870 . . . . . 6 (𝐴𝑆𝐴 𝑆)
213ad2ant3 1131 . . . . 5 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → 𝐴 𝑆)
32unissd 4850 . . . 4 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → 𝐴 𝑆)
4 eqimss2 4026 . . . . . . . . . 10 (𝑋 = 𝑦 𝑦𝑋)
5 sspwuni 5024 . . . . . . . . . 10 (𝑦 ⊆ 𝒫 𝑋 𝑦𝑋)
64, 5sylibr 236 . . . . . . . . 9 (𝑋 = 𝑦𝑦 ⊆ 𝒫 𝑋)
76ralimi 3162 . . . . . . . 8 (∀𝑦𝑆 𝑋 = 𝑦 → ∀𝑦𝑆 𝑦 ⊆ 𝒫 𝑋)
873ad2ant2 1130 . . . . . . 7 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → ∀𝑦𝑆 𝑦 ⊆ 𝒫 𝑋)
9 unissb 4872 . . . . . . 7 ( 𝑆 ⊆ 𝒫 𝑋 ↔ ∀𝑦𝑆 𝑦 ⊆ 𝒫 𝑋)
108, 9sylibr 236 . . . . . 6 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → 𝑆 ⊆ 𝒫 𝑋)
11 sspwuni 5024 . . . . . 6 ( 𝑆 ⊆ 𝒫 𝑋 𝑆𝑋)
1210, 11sylib 220 . . . . 5 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → 𝑆𝑋)
13 unieq 4851 . . . . . . . 8 (𝑦 = 𝐴 𝑦 = 𝐴)
1413eqeq2d 2834 . . . . . . 7 (𝑦 = 𝐴 → (𝑋 = 𝑦𝑋 = 𝐴))
1514rspccva 3624 . . . . . 6 ((∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → 𝑋 = 𝐴)
16153adant1 1126 . . . . 5 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → 𝑋 = 𝐴)
1712, 16sseqtrd 4009 . . . 4 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → 𝑆 𝐴)
183, 17eqssd 3986 . . 3 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → 𝐴 = 𝑆)
19 pwexg 5281 . . . . . . 7 (𝑋𝑉 → 𝒫 𝑋 ∈ V)
20193ad2ant1 1129 . . . . . 6 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → 𝒫 𝑋 ∈ V)
2120, 10ssexd 5230 . . . . 5 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → 𝑆 ∈ V)
22 bastg 21576 . . . . 5 ( 𝑆 ∈ V → 𝑆 ⊆ (topGen‘ 𝑆))
2321, 22syl 17 . . . 4 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → 𝑆 ⊆ (topGen‘ 𝑆))
242, 23sstrd 3979 . . 3 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → 𝐴 ⊆ (topGen‘ 𝑆))
25 eqid 2823 . . . 4 𝐴 = 𝐴
26 eqid 2823 . . . 4 𝑆 = 𝑆
2725, 26isfne4 33690 . . 3 (𝐴Fne 𝑆 ↔ ( 𝐴 = 𝑆𝐴 ⊆ (topGen‘ 𝑆)))
2818, 24, 27sylanbrc 585 . 2 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → 𝐴Fne 𝑆)
29 ne0i 4302 . . . 4 (𝐴𝑆𝑆 ≠ ∅)
30293ad2ant3 1131 . . 3 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → 𝑆 ≠ ∅)
31 ifnefalse 4481 . . 3 (𝑆 ≠ ∅ → if(𝑆 = ∅, {𝑋}, 𝑆) = 𝑆)
3230, 31syl 17 . 2 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → if(𝑆 = ∅, {𝑋}, 𝑆) = 𝑆)
3328, 32breqtrrd 5096 1 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → 𝐴Fneif(𝑆 = ∅, {𝑋}, 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1083   = wceq 1537  wcel 2114  wne 3018  wral 3140  Vcvv 3496  wss 3938  c0 4293  ifcif 4469  𝒫 cpw 4541  {csn 4569   cuni 4840   class class class wbr 5068  cfv 6357  topGenctg 16713  Fnecfne 33686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-iota 6316  df-fun 6359  df-fv 6365  df-topgen 16719  df-fne 33687
This theorem is referenced by:  fnejoin2  33719
  Copyright terms: Public domain W3C validator