Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fneval Structured version   Visualization version   GIF version

Theorem fneval 32674
Description: Two covers are finer than each other iff they are both bases for the same topology. (Contributed by Mario Carneiro, 11-Sep-2015.)
Hypothesis
Ref Expression
fneval.1 = (Fne ∩ Fne)
Assertion
Ref Expression
fneval ((𝐴𝑉𝐵𝑊) → (𝐴 𝐵 ↔ (topGen‘𝐴) = (topGen‘𝐵)))

Proof of Theorem fneval
StepHypRef Expression
1 fneval.1 . . . 4 = (Fne ∩ Fne)
21breqi 4810 . . 3 (𝐴 𝐵𝐴(Fne ∩ Fne)𝐵)
3 brin 4856 . . . 4 (𝐴(Fne ∩ Fne)𝐵 ↔ (𝐴Fne𝐵𝐴Fne𝐵))
4 fnerel 32660 . . . . . 6 Rel Fne
54relbrcnv 5664 . . . . 5 (𝐴Fne𝐵𝐵Fne𝐴)
65anbi2i 732 . . . 4 ((𝐴Fne𝐵𝐴Fne𝐵) ↔ (𝐴Fne𝐵𝐵Fne𝐴))
73, 6bitri 264 . . 3 (𝐴(Fne ∩ Fne)𝐵 ↔ (𝐴Fne𝐵𝐵Fne𝐴))
82, 7bitri 264 . 2 (𝐴 𝐵 ↔ (𝐴Fne𝐵𝐵Fne𝐴))
9 eqid 2760 . . . . . 6 𝐴 = 𝐴
10 eqid 2760 . . . . . 6 𝐵 = 𝐵
119, 10isfne4b 32663 . . . . 5 (𝐵𝑊 → (𝐴Fne𝐵 ↔ ( 𝐴 = 𝐵 ∧ (topGen‘𝐴) ⊆ (topGen‘𝐵))))
1210, 9isfne4b 32663 . . . . . 6 (𝐴𝑉 → (𝐵Fne𝐴 ↔ ( 𝐵 = 𝐴 ∧ (topGen‘𝐵) ⊆ (topGen‘𝐴))))
13 eqcom 2767 . . . . . . 7 ( 𝐵 = 𝐴 𝐴 = 𝐵)
1413anbi1i 733 . . . . . 6 (( 𝐵 = 𝐴 ∧ (topGen‘𝐵) ⊆ (topGen‘𝐴)) ↔ ( 𝐴 = 𝐵 ∧ (topGen‘𝐵) ⊆ (topGen‘𝐴)))
1512, 14syl6bb 276 . . . . 5 (𝐴𝑉 → (𝐵Fne𝐴 ↔ ( 𝐴 = 𝐵 ∧ (topGen‘𝐵) ⊆ (topGen‘𝐴))))
1611, 15bi2anan9r 954 . . . 4 ((𝐴𝑉𝐵𝑊) → ((𝐴Fne𝐵𝐵Fne𝐴) ↔ (( 𝐴 = 𝐵 ∧ (topGen‘𝐴) ⊆ (topGen‘𝐵)) ∧ ( 𝐴 = 𝐵 ∧ (topGen‘𝐵) ⊆ (topGen‘𝐴)))))
17 eqss 3759 . . . . . 6 ((topGen‘𝐴) = (topGen‘𝐵) ↔ ((topGen‘𝐴) ⊆ (topGen‘𝐵) ∧ (topGen‘𝐵) ⊆ (topGen‘𝐴)))
1817anbi2i 732 . . . . 5 (( 𝐴 = 𝐵 ∧ (topGen‘𝐴) = (topGen‘𝐵)) ↔ ( 𝐴 = 𝐵 ∧ ((topGen‘𝐴) ⊆ (topGen‘𝐵) ∧ (topGen‘𝐵) ⊆ (topGen‘𝐴))))
19 anandi 906 . . . . 5 (( 𝐴 = 𝐵 ∧ ((topGen‘𝐴) ⊆ (topGen‘𝐵) ∧ (topGen‘𝐵) ⊆ (topGen‘𝐴))) ↔ (( 𝐴 = 𝐵 ∧ (topGen‘𝐴) ⊆ (topGen‘𝐵)) ∧ ( 𝐴 = 𝐵 ∧ (topGen‘𝐵) ⊆ (topGen‘𝐴))))
2018, 19bitri 264 . . . 4 (( 𝐴 = 𝐵 ∧ (topGen‘𝐴) = (topGen‘𝐵)) ↔ (( 𝐴 = 𝐵 ∧ (topGen‘𝐴) ⊆ (topGen‘𝐵)) ∧ ( 𝐴 = 𝐵 ∧ (topGen‘𝐵) ⊆ (topGen‘𝐴))))
2116, 20syl6bbr 278 . . 3 ((𝐴𝑉𝐵𝑊) → ((𝐴Fne𝐵𝐵Fne𝐴) ↔ ( 𝐴 = 𝐵 ∧ (topGen‘𝐴) = (topGen‘𝐵))))
22 unieq 4596 . . . . 5 ((topGen‘𝐴) = (topGen‘𝐵) → (topGen‘𝐴) = (topGen‘𝐵))
23 unitg 20993 . . . . . 6 (𝐴𝑉 (topGen‘𝐴) = 𝐴)
24 unitg 20993 . . . . . 6 (𝐵𝑊 (topGen‘𝐵) = 𝐵)
2523, 24eqeqan12d 2776 . . . . 5 ((𝐴𝑉𝐵𝑊) → ( (topGen‘𝐴) = (topGen‘𝐵) ↔ 𝐴 = 𝐵))
2622, 25syl5ib 234 . . . 4 ((𝐴𝑉𝐵𝑊) → ((topGen‘𝐴) = (topGen‘𝐵) → 𝐴 = 𝐵))
2726pm4.71rd 670 . . 3 ((𝐴𝑉𝐵𝑊) → ((topGen‘𝐴) = (topGen‘𝐵) ↔ ( 𝐴 = 𝐵 ∧ (topGen‘𝐴) = (topGen‘𝐵))))
2821, 27bitr4d 271 . 2 ((𝐴𝑉𝐵𝑊) → ((𝐴Fne𝐵𝐵Fne𝐴) ↔ (topGen‘𝐴) = (topGen‘𝐵)))
298, 28syl5bb 272 1 ((𝐴𝑉𝐵𝑊) → (𝐴 𝐵 ↔ (topGen‘𝐴) = (topGen‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  cin 3714  wss 3715   cuni 4588   class class class wbr 4804  ccnv 5265  cfv 6049  topGenctg 16320  Fnecfne 32658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-iota 6012  df-fun 6051  df-fv 6057  df-topgen 16326  df-fne 32659
This theorem is referenced by:  fneer  32675  topfneec  32677  topfneec2  32678
  Copyright terms: Public domain W3C validator