MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnexALT Structured version   Visualization version   GIF version

Theorem fnexALT 7002
Description: Alternate proof of fnex 6363, derived using the Axiom of Replacement in the form of funimaexg 5874. This version uses ax-pow 4763 and ax-un 6824, whereas fnex 6363 does not. (Contributed by NM, 14-Aug-1994.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
fnexALT ((𝐹 Fn 𝐴𝐴𝐵) → 𝐹 ∈ V)

Proof of Theorem fnexALT
StepHypRef Expression
1 fnrel 5888 . . . 4 (𝐹 Fn 𝐴 → Rel 𝐹)
2 relssdmrn 5558 . . . 4 (Rel 𝐹𝐹 ⊆ (dom 𝐹 × ran 𝐹))
31, 2syl 17 . . 3 (𝐹 Fn 𝐴𝐹 ⊆ (dom 𝐹 × ran 𝐹))
43adantr 479 . 2 ((𝐹 Fn 𝐴𝐴𝐵) → 𝐹 ⊆ (dom 𝐹 × ran 𝐹))
5 fndm 5889 . . . . 5 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
65eleq1d 2671 . . . 4 (𝐹 Fn 𝐴 → (dom 𝐹𝐵𝐴𝐵))
76biimpar 500 . . 3 ((𝐹 Fn 𝐴𝐴𝐵) → dom 𝐹𝐵)
8 fnfun 5887 . . . . 5 (𝐹 Fn 𝐴 → Fun 𝐹)
9 funimaexg 5874 . . . . 5 ((Fun 𝐹𝐴𝐵) → (𝐹𝐴) ∈ V)
108, 9sylan 486 . . . 4 ((𝐹 Fn 𝐴𝐴𝐵) → (𝐹𝐴) ∈ V)
11 imadmrn 5381 . . . . . . 7 (𝐹 “ dom 𝐹) = ran 𝐹
125imaeq2d 5371 . . . . . . 7 (𝐹 Fn 𝐴 → (𝐹 “ dom 𝐹) = (𝐹𝐴))
1311, 12syl5eqr 2657 . . . . . 6 (𝐹 Fn 𝐴 → ran 𝐹 = (𝐹𝐴))
1413eleq1d 2671 . . . . 5 (𝐹 Fn 𝐴 → (ran 𝐹 ∈ V ↔ (𝐹𝐴) ∈ V))
1514biimpar 500 . . . 4 ((𝐹 Fn 𝐴 ∧ (𝐹𝐴) ∈ V) → ran 𝐹 ∈ V)
1610, 15syldan 485 . . 3 ((𝐹 Fn 𝐴𝐴𝐵) → ran 𝐹 ∈ V)
17 xpexg 6835 . . 3 ((dom 𝐹𝐵 ∧ ran 𝐹 ∈ V) → (dom 𝐹 × ran 𝐹) ∈ V)
187, 16, 17syl2anc 690 . 2 ((𝐹 Fn 𝐴𝐴𝐵) → (dom 𝐹 × ran 𝐹) ∈ V)
19 ssexg 4726 . 2 ((𝐹 ⊆ (dom 𝐹 × ran 𝐹) ∧ (dom 𝐹 × ran 𝐹) ∈ V) → 𝐹 ∈ V)
204, 18, 19syl2anc 690 1 ((𝐹 Fn 𝐴𝐴𝐵) → 𝐹 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  wcel 1976  Vcvv 3172  wss 3539   × cxp 5025  dom cdm 5027  ran crn 5028  cima 5030  Rel wrel 5032  Fun wfun 5783   Fn wfn 5784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4711  ax-pow 4763  ax-pr 4827  ax-un 6824
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ral 2900  df-rex 2901  df-rab 2904  df-v 3174  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-br 4578  df-opab 4638  df-id 4942  df-xp 5033  df-rel 5034  df-cnv 5035  df-co 5036  df-dm 5037  df-rn 5038  df-res 5039  df-ima 5040  df-fun 5791  df-fn 5792
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator