Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnlimfvre Structured version   Visualization version   GIF version

Theorem fnlimfvre 39333
Description: The limit function of real functions, applied to elements in its domain, evaluates to Real values. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
fnlimfvre.p 𝑚𝜑
fnlimfvre.m 𝑚𝐹
fnlimfvre.n 𝑥𝐹
fnlimfvre.z 𝑍 = (ℤ𝑀)
fnlimfvre.f ((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
fnlimfvre.d 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
fnlimfvre.x (𝜑𝑋𝐷)
Assertion
Ref Expression
fnlimfvre (𝜑 → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ)
Distinct variable groups:   𝑛,𝐹   𝑚,𝑋,𝑛,𝑥   𝑚,𝑍,𝑛,𝑥   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑥,𝑚)   𝐷(𝑥,𝑚,𝑛)   𝐹(𝑥,𝑚)   𝑀(𝑥,𝑚,𝑛)

Proof of Theorem fnlimfvre
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fnlimfvre.x . . 3 (𝜑𝑋𝐷)
2 fnlimfvre.d . . . . . 6 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
3 nfcv 2761 . . . . . . . 8 𝑥𝑍
4 nfcv 2761 . . . . . . . . 9 𝑥(ℤ𝑛)
5 fnlimfvre.n . . . . . . . . . . 11 𝑥𝐹
6 nfcv 2761 . . . . . . . . . . 11 𝑥𝑚
75, 6nffv 6160 . . . . . . . . . 10 𝑥(𝐹𝑚)
87nfdm 5332 . . . . . . . . 9 𝑥dom (𝐹𝑚)
94, 8nfiin 4520 . . . . . . . 8 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
103, 9nfiun 4519 . . . . . . 7 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
1110ssrab2f 38812 . . . . . 6 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ } ⊆ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
122, 11eqsstri 3619 . . . . 5 𝐷 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
1312sseli 3583 . . . 4 (𝑋𝐷𝑋 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
14 eliun 4495 . . . 4 (𝑋 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ↔ ∃𝑛𝑍 𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
1513, 14sylib 208 . . 3 (𝑋𝐷 → ∃𝑛𝑍 𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
161, 15syl 17 . 2 (𝜑 → ∃𝑛𝑍 𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
17 nfv 1840 . . 3 𝑛𝜑
18 nfv 1840 . . 3 𝑛( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ
19 fnlimfvre.p . . . . . . 7 𝑚𝜑
20 nfv 1840 . . . . . . 7 𝑚 𝑛𝑍
21 nfcv 2761 . . . . . . . 8 𝑚𝑋
22 nfii1 4522 . . . . . . . 8 𝑚 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
2321, 22nfel 2773 . . . . . . 7 𝑚 𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
2419, 20, 23nf3an 1828 . . . . . 6 𝑚(𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
25 uzssz 11658 . . . . . . . 8 (ℤ𝑀) ⊆ ℤ
26 fnlimfvre.z . . . . . . . . . 10 𝑍 = (ℤ𝑀)
2726eleq2i 2690 . . . . . . . . 9 (𝑛𝑍𝑛 ∈ (ℤ𝑀))
2827biimpi 206 . . . . . . . 8 (𝑛𝑍𝑛 ∈ (ℤ𝑀))
2925, 28sseldi 3585 . . . . . . 7 (𝑛𝑍𝑛 ∈ ℤ)
30293ad2ant2 1081 . . . . . 6 ((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝑛 ∈ ℤ)
31 eqid 2621 . . . . . 6 (ℤ𝑛) = (ℤ𝑛)
32 fvex 6163 . . . . . . . 8 (ℤ𝑀) ∈ V
3326, 32eqeltri 2694 . . . . . . 7 𝑍 ∈ V
3433a1i 11 . . . . . 6 ((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝑍 ∈ V)
3526uztrn2 11656 . . . . . . . 8 ((𝑛𝑍𝑗 ∈ (ℤ𝑛)) → 𝑗𝑍)
3635ssd 38762 . . . . . . 7 (𝑛𝑍 → (ℤ𝑛) ⊆ 𝑍)
37363ad2ant2 1081 . . . . . 6 ((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (ℤ𝑛) ⊆ 𝑍)
38 fvex 6163 . . . . . . 7 ((𝐹𝑚)‘𝑋) ∈ V
3938a1i 11 . . . . . 6 (((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑚𝑍) → ((𝐹𝑚)‘𝑋) ∈ V)
40 fvex 6163 . . . . . . 7 (ℤ𝑛) ∈ V
4140a1i 11 . . . . . 6 ((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (ℤ𝑛) ∈ V)
42 simpr 477 . . . . . . 7 (((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑗 ∈ (ℤ𝑛)) → 𝑗 ∈ (ℤ𝑛))
4342ssd 38762 . . . . . 6 ((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (ℤ𝑛) ⊆ (ℤ𝑛))
4438a1i 11 . . . . . 6 (((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑛)) → ((𝐹𝑚)‘𝑋) ∈ V)
45 eqidd 2622 . . . . . 6 (((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑛)) → ((𝐹𝑚)‘𝑋) = ((𝐹𝑚)‘𝑋))
4624, 30, 31, 34, 37, 39, 41, 43, 44, 45climfveqmpt 39330 . . . . 5 ((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) = ( ⇝ ‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))))
472eleq2i 2690 . . . . . . . . . . . . 13 (𝑋𝐷𝑋 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ })
4847biimpi 206 . . . . . . . . . . . 12 (𝑋𝐷𝑋 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ })
49 nfcv 2761 . . . . . . . . . . . . . . 15 𝑥𝑋
507, 49nffv 6160 . . . . . . . . . . . . . . . . 17 𝑥((𝐹𝑚)‘𝑋)
513, 50nfmpt 4711 . . . . . . . . . . . . . . . 16 𝑥(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))
52 nfcv 2761 . . . . . . . . . . . . . . . 16 𝑥dom ⇝
5351, 52nfel 2773 . . . . . . . . . . . . . . 15 𝑥(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) ∈ dom ⇝
54 fveq2 6153 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑋 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑚)‘𝑋))
5554mpteq2dv 4710 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑋 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)))
5655eleq1d 2683 . . . . . . . . . . . . . . 15 (𝑥 = 𝑋 → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ ↔ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) ∈ dom ⇝ ))
5749, 10, 53, 56elrabf 3347 . . . . . . . . . . . . . 14 (𝑋 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ } ↔ (𝑋 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) ∈ dom ⇝ ))
5857biimpi 206 . . . . . . . . . . . . 13 (𝑋 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ } → (𝑋 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) ∈ dom ⇝ ))
5958simprd 479 . . . . . . . . . . . 12 (𝑋 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ } → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) ∈ dom ⇝ )
6048, 59syl 17 . . . . . . . . . . 11 (𝑋𝐷 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) ∈ dom ⇝ )
6160adantr 481 . . . . . . . . . 10 ((𝑋𝐷𝑛𝑍) → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) ∈ dom ⇝ )
62 nfmpt1 4712 . . . . . . . . . . . . . . . 16 𝑚(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))
63 nfcv 2761 . . . . . . . . . . . . . . . 16 𝑚dom ⇝
6462, 63nfel 2773 . . . . . . . . . . . . . . 15 𝑚(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝
65 nfv 1840 . . . . . . . . . . . . . . . . 17 𝑚 𝑗𝑍
6665nfci 2751 . . . . . . . . . . . . . . . 16 𝑚𝑍
6766, 22nfiun 4519 . . . . . . . . . . . . . . 15 𝑚 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
6864, 67nfrab 3115 . . . . . . . . . . . . . 14 𝑚{𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
692, 68nfcxfr 2759 . . . . . . . . . . . . 13 𝑚𝐷
7021, 69nfel 2773 . . . . . . . . . . . 12 𝑚 𝑋𝐷
7170, 20nfan 1825 . . . . . . . . . . 11 𝑚(𝑋𝐷𝑛𝑍)
7229adantl 482 . . . . . . . . . . 11 ((𝑋𝐷𝑛𝑍) → 𝑛 ∈ ℤ)
7333a1i 11 . . . . . . . . . . 11 ((𝑋𝐷𝑛𝑍) → 𝑍 ∈ V)
7436adantl 482 . . . . . . . . . . 11 ((𝑋𝐷𝑛𝑍) → (ℤ𝑛) ⊆ 𝑍)
7538a1i 11 . . . . . . . . . . 11 (((𝑋𝐷𝑛𝑍) ∧ 𝑚𝑍) → ((𝐹𝑚)‘𝑋) ∈ V)
7640a1i 11 . . . . . . . . . . 11 ((𝑋𝐷𝑛𝑍) → (ℤ𝑛) ∈ V)
77 ssid 3608 . . . . . . . . . . . 12 (ℤ𝑛) ⊆ (ℤ𝑛)
7877a1i 11 . . . . . . . . . . 11 ((𝑋𝐷𝑛𝑍) → (ℤ𝑛) ⊆ (ℤ𝑛))
7938a1i 11 . . . . . . . . . . 11 (((𝑋𝐷𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → ((𝐹𝑚)‘𝑋) ∈ V)
80 eqidd 2622 . . . . . . . . . . 11 (((𝑋𝐷𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → ((𝐹𝑚)‘𝑋) = ((𝐹𝑚)‘𝑋))
8171, 72, 31, 73, 74, 75, 76, 78, 79, 80climeldmeqmpt 39327 . . . . . . . . . 10 ((𝑋𝐷𝑛𝑍) → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) ∈ dom ⇝ ↔ (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)) ∈ dom ⇝ ))
8261, 81mpbid 222 . . . . . . . . 9 ((𝑋𝐷𝑛𝑍) → (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)) ∈ dom ⇝ )
83 climdm 14226 . . . . . . . . 9 ((𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)) ∈ dom ⇝ ↔ (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)) ⇝ ( ⇝ ‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))))
8482, 83sylib 208 . . . . . . . 8 ((𝑋𝐷𝑛𝑍) → (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)) ⇝ ( ⇝ ‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))))
851, 84sylan 488 . . . . . . 7 ((𝜑𝑛𝑍) → (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)) ⇝ ( ⇝ ‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))))
86853adant3 1079 . . . . . 6 ((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)) ⇝ ( ⇝ ‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))))
87 simpl1 1062 . . . . . . 7 (((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑗 ∈ (ℤ𝑛)) → 𝜑)
88 simpl2 1063 . . . . . . 7 (((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑗 ∈ (ℤ𝑛)) → 𝑛𝑍)
89 nfcv 2761 . . . . . . . . . . . . 13 𝑗dom (𝐹𝑚)
90 fnlimfvre.m . . . . . . . . . . . . . . 15 𝑚𝐹
91 nfcv 2761 . . . . . . . . . . . . . . 15 𝑚𝑗
9290, 91nffv 6160 . . . . . . . . . . . . . 14 𝑚(𝐹𝑗)
9392nfdm 5332 . . . . . . . . . . . . 13 𝑚dom (𝐹𝑗)
94 fveq2 6153 . . . . . . . . . . . . . 14 (𝑚 = 𝑗 → (𝐹𝑚) = (𝐹𝑗))
9594dmeqd 5291 . . . . . . . . . . . . 13 (𝑚 = 𝑗 → dom (𝐹𝑚) = dom (𝐹𝑗))
9689, 93, 95cbviin 4529 . . . . . . . . . . . 12 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑗 ∈ (ℤ𝑛)dom (𝐹𝑗)
9796eleq2i 2690 . . . . . . . . . . 11 (𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ↔ 𝑋 𝑗 ∈ (ℤ𝑛)dom (𝐹𝑗))
9897biimpi 206 . . . . . . . . . 10 (𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) → 𝑋 𝑗 ∈ (ℤ𝑛)dom (𝐹𝑗))
9998adantr 481 . . . . . . . . 9 ((𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ 𝑗 ∈ (ℤ𝑛)) → 𝑋 𝑗 ∈ (ℤ𝑛)dom (𝐹𝑗))
100 simpr 477 . . . . . . . . 9 ((𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ 𝑗 ∈ (ℤ𝑛)) → 𝑗 ∈ (ℤ𝑛))
101 eliinid 38806 . . . . . . . . 9 ((𝑋 𝑗 ∈ (ℤ𝑛)dom (𝐹𝑗) ∧ 𝑗 ∈ (ℤ𝑛)) → 𝑋 ∈ dom (𝐹𝑗))
10299, 100, 101syl2anc 692 . . . . . . . 8 ((𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ 𝑗 ∈ (ℤ𝑛)) → 𝑋 ∈ dom (𝐹𝑗))
1031023ad2antl3 1223 . . . . . . 7 (((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑗 ∈ (ℤ𝑛)) → 𝑋 ∈ dom (𝐹𝑗))
104 id 22 . . . . . . . . . 10 (𝑗 ∈ (ℤ𝑛) → 𝑗 ∈ (ℤ𝑛))
105 fvex 6163 . . . . . . . . . . 11 ((𝐹𝑗)‘𝑋) ∈ V
106105a1i 11 . . . . . . . . . 10 (𝑗 ∈ (ℤ𝑛) → ((𝐹𝑗)‘𝑋) ∈ V)
10792, 21nffv 6160 . . . . . . . . . . 11 𝑚((𝐹𝑗)‘𝑋)
10894fveq1d 6155 . . . . . . . . . . 11 (𝑚 = 𝑗 → ((𝐹𝑚)‘𝑋) = ((𝐹𝑗)‘𝑋))
109 eqid 2621 . . . . . . . . . . 11 (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)) = (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))
11091, 107, 108, 109fvmptf 6262 . . . . . . . . . 10 ((𝑗 ∈ (ℤ𝑛) ∧ ((𝐹𝑗)‘𝑋) ∈ V) → ((𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))‘𝑗) = ((𝐹𝑗)‘𝑋))
111104, 106, 110syl2anc 692 . . . . . . . . 9 (𝑗 ∈ (ℤ𝑛) → ((𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))‘𝑗) = ((𝐹𝑗)‘𝑋))
112111adantl 482 . . . . . . . 8 (((𝜑𝑛𝑍𝑋 ∈ dom (𝐹𝑗)) ∧ 𝑗 ∈ (ℤ𝑛)) → ((𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))‘𝑗) = ((𝐹𝑗)‘𝑋))
113 simpll 789 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑗 ∈ (ℤ𝑛)) → 𝜑)
11435adantll 749 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑗 ∈ (ℤ𝑛)) → 𝑗𝑍)
11519, 65nfan 1825 . . . . . . . . . . . . 13 𝑚(𝜑𝑗𝑍)
116 nfcv 2761 . . . . . . . . . . . . . 14 𝑚
11792, 93, 116nff 6003 . . . . . . . . . . . . 13 𝑚(𝐹𝑗):dom (𝐹𝑗)⟶ℝ
118115, 117nfim 1822 . . . . . . . . . . . 12 𝑚((𝜑𝑗𝑍) → (𝐹𝑗):dom (𝐹𝑗)⟶ℝ)
119 eleq1 2686 . . . . . . . . . . . . . 14 (𝑚 = 𝑗 → (𝑚𝑍𝑗𝑍))
120119anbi2d 739 . . . . . . . . . . . . 13 (𝑚 = 𝑗 → ((𝜑𝑚𝑍) ↔ (𝜑𝑗𝑍)))
12194, 95feq12d 5995 . . . . . . . . . . . . 13 (𝑚 = 𝑗 → ((𝐹𝑚):dom (𝐹𝑚)⟶ℝ ↔ (𝐹𝑗):dom (𝐹𝑗)⟶ℝ))
122120, 121imbi12d 334 . . . . . . . . . . . 12 (𝑚 = 𝑗 → (((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ) ↔ ((𝜑𝑗𝑍) → (𝐹𝑗):dom (𝐹𝑗)⟶ℝ)))
123 fnlimfvre.f . . . . . . . . . . . 12 ((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
124118, 122, 123chvar 2261 . . . . . . . . . . 11 ((𝜑𝑗𝑍) → (𝐹𝑗):dom (𝐹𝑗)⟶ℝ)
125113, 114, 124syl2anc 692 . . . . . . . . . 10 (((𝜑𝑛𝑍) ∧ 𝑗 ∈ (ℤ𝑛)) → (𝐹𝑗):dom (𝐹𝑗)⟶ℝ)
1261253adantl3 1217 . . . . . . . . 9 (((𝜑𝑛𝑍𝑋 ∈ dom (𝐹𝑗)) ∧ 𝑗 ∈ (ℤ𝑛)) → (𝐹𝑗):dom (𝐹𝑗)⟶ℝ)
127 simpl3 1064 . . . . . . . . 9 (((𝜑𝑛𝑍𝑋 ∈ dom (𝐹𝑗)) ∧ 𝑗 ∈ (ℤ𝑛)) → 𝑋 ∈ dom (𝐹𝑗))
128126, 127ffvelrnd 6321 . . . . . . . 8 (((𝜑𝑛𝑍𝑋 ∈ dom (𝐹𝑗)) ∧ 𝑗 ∈ (ℤ𝑛)) → ((𝐹𝑗)‘𝑋) ∈ ℝ)
129112, 128eqeltrd 2698 . . . . . . 7 (((𝜑𝑛𝑍𝑋 ∈ dom (𝐹𝑗)) ∧ 𝑗 ∈ (ℤ𝑛)) → ((𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))‘𝑗) ∈ ℝ)
13087, 88, 103, 42, 129syl31anc 1326 . . . . . 6 (((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑗 ∈ (ℤ𝑛)) → ((𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))‘𝑗) ∈ ℝ)
13131, 30, 86, 130climrecl 14255 . . . . 5 ((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → ( ⇝ ‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ)
13246, 131eqeltrd 2698 . . . 4 ((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ)
1331323exp 1261 . . 3 (𝜑 → (𝑛𝑍 → (𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ)))
13417, 18, 133rexlimd 3020 . 2 (𝜑 → (∃𝑛𝑍 𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ))
13516, 134mpd 15 1 (𝜑 → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wnf 1705  wcel 1987  wnfc 2748  wrex 2908  {crab 2911  Vcvv 3189  wss 3559   ciun 4490   ciin 4491   class class class wbr 4618  cmpt 4678  dom cdm 5079  wf 5848  cfv 5852  cr 9886  cz 11328  cuz 11638  cli 14156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9943  ax-resscn 9944  ax-1cn 9945  ax-icn 9946  ax-addcl 9947  ax-addrcl 9948  ax-mulcl 9949  ax-mulrcl 9950  ax-mulcom 9951  ax-addass 9952  ax-mulass 9953  ax-distr 9954  ax-i2m1 9955  ax-1ne0 9956  ax-1rid 9957  ax-rnegex 9958  ax-rrecex 9959  ax-cnre 9960  ax-pre-lttri 9961  ax-pre-lttrn 9962  ax-pre-ltadd 9963  ax-pre-mulgt0 9964  ax-pre-sup 9965
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-er 7694  df-pm 7812  df-en 7907  df-dom 7908  df-sdom 7909  df-sup 8299  df-inf 8300  df-pnf 10027  df-mnf 10028  df-xr 10029  df-ltxr 10030  df-le 10031  df-sub 10219  df-neg 10220  df-div 10636  df-nn 10972  df-2 11030  df-3 11031  df-n0 11244  df-z 11329  df-uz 11639  df-rp 11784  df-fl 12540  df-seq 12749  df-exp 12808  df-cj 13780  df-re 13781  df-im 13782  df-sqrt 13916  df-abs 13917  df-clim 14160  df-rlim 14161
This theorem is referenced by:  fnlimfvre2  39336  fnlimf  39337  smflimlem4  40310  smflim  40313
  Copyright terms: Public domain W3C validator