Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnlimfvre2 Structured version   Visualization version   GIF version

Theorem fnlimfvre2 39310
Description: The limit function of real functions, applied to elements in its domain, evaluates to Real values. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
fnlimfvre2.p 𝑚𝜑
fnlimfvre2.m 𝑚𝐹
fnlimfvre2.n 𝑥𝐹
fnlimfvre2.z 𝑍 = (ℤ𝑀)
fnlimfvre2.f ((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
fnlimfvre2.d 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
fnlimfvre2.g 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
fnlimfvre2.x (𝜑𝑋𝐷)
Assertion
Ref Expression
fnlimfvre2 (𝜑 → (𝐺𝑋) ∈ ℝ)
Distinct variable groups:   𝑛,𝐹   𝑚,𝑋,𝑛,𝑥   𝑚,𝑍,𝑛,𝑥   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑥,𝑚)   𝐷(𝑥,𝑚,𝑛)   𝐹(𝑥,𝑚)   𝐺(𝑥,𝑚,𝑛)   𝑀(𝑥,𝑚,𝑛)

Proof of Theorem fnlimfvre2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 fnlimfvre2.x . . 3 (𝜑𝑋𝐷)
2 fvex 6158 . . . 4 ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) ∈ V
32a1i 11 . . 3 (𝜑 → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) ∈ V)
4 nfcv 2761 . . . 4 𝑧𝑋
5 nfcv 2761 . . . 4 𝑧( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)))
6 fveq2 6148 . . . . . . 7 (𝑋 = 𝑧 → ((𝐹𝑚)‘𝑋) = ((𝐹𝑚)‘𝑧))
76mpteq2dv 4705 . . . . . 6 (𝑋 = 𝑧 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧)))
8 eqcom 2628 . . . . . . . 8 (𝑋 = 𝑧𝑧 = 𝑋)
98imbi1i 339 . . . . . . 7 ((𝑋 = 𝑧 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧))) ↔ (𝑧 = 𝑋 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧))))
10 eqcom 2628 . . . . . . . 8 ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧)) ↔ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)))
1110imbi2i 326 . . . . . . 7 ((𝑧 = 𝑋 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧))) ↔ (𝑧 = 𝑋 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))))
129, 11bitri 264 . . . . . 6 ((𝑋 = 𝑧 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧))) ↔ (𝑧 = 𝑋 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))))
137, 12mpbi 220 . . . . 5 (𝑧 = 𝑋 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)))
1413fveq2d 6152 . . . 4 (𝑧 = 𝑋 → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧))) = ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))))
15 fnlimfvre2.g . . . . 5 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
16 fnlimfvre2.d . . . . . . 7 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
17 nfrab1 3111 . . . . . . 7 𝑥{𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
1816, 17nfcxfr 2759 . . . . . 6 𝑥𝐷
19 nfcv 2761 . . . . . 6 𝑧𝐷
20 nfcv 2761 . . . . . 6 𝑧( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))
21 nfcv 2761 . . . . . . 7 𝑥
22 nfcv 2761 . . . . . . . 8 𝑥𝑍
23 fnlimfvre2.n . . . . . . . . . 10 𝑥𝐹
24 nfcv 2761 . . . . . . . . . 10 𝑥𝑚
2523, 24nffv 6155 . . . . . . . . 9 𝑥(𝐹𝑚)
26 nfcv 2761 . . . . . . . . 9 𝑥𝑧
2725, 26nffv 6155 . . . . . . . 8 𝑥((𝐹𝑚)‘𝑧)
2822, 27nfmpt 4706 . . . . . . 7 𝑥(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧))
2921, 28nffv 6155 . . . . . 6 𝑥( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧)))
30 fveq2 6148 . . . . . . . 8 (𝑥 = 𝑧 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑚)‘𝑧))
3130mpteq2dv 4705 . . . . . . 7 (𝑥 = 𝑧 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧)))
3231fveq2d 6152 . . . . . 6 (𝑥 = 𝑧 → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧))))
3318, 19, 20, 29, 32cbvmptf 4708 . . . . 5 (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))) = (𝑧𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧))))
3415, 33eqtri 2643 . . . 4 𝐺 = (𝑧𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑧))))
354, 5, 14, 34fvmptf 6257 . . 3 ((𝑋𝐷 ∧ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) ∈ V) → (𝐺𝑋) = ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))))
361, 3, 35syl2anc 692 . 2 (𝜑 → (𝐺𝑋) = ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))))
37 fnlimfvre2.p . . 3 𝑚𝜑
38 fnlimfvre2.m . . 3 𝑚𝐹
39 fnlimfvre2.z . . 3 𝑍 = (ℤ𝑀)
40 fnlimfvre2.f . . 3 ((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
4137, 38, 23, 39, 40, 16, 1fnlimfvre 39307 . 2 (𝜑 → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ)
4236, 41eqeltrd 2698 1 (𝜑 → (𝐺𝑋) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wnf 1705  wcel 1987  wnfc 2748  {crab 2911  Vcvv 3186   ciun 4485   ciin 4486  cmpt 4673  dom cdm 5074  wf 5843  cfv 5847  cr 9879  cuz 11631  cli 14149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-pm 7805  df-en 7900  df-dom 7901  df-sdom 7902  df-sup 8292  df-inf 8293  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-fl 12533  df-seq 12742  df-exp 12801  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-clim 14153  df-rlim 14154
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator