MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnmre Structured version   Visualization version   GIF version

Theorem fnmre 16172
Description: The Moore collection generator is a well-behaved function. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Assertion
Ref Expression
fnmre Moore Fn V

Proof of Theorem fnmre
Dummy variables 𝑐 𝑠 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vpwex 4809 . . . 4 𝒫 𝑥 ∈ V
21pwex 4808 . . 3 𝒫 𝒫 𝑥 ∈ V
32rabex 4773 . 2 {𝑐 ∈ 𝒫 𝒫 𝑥 ∣ (𝑥𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → 𝑠𝑐))} ∈ V
4 df-mre 16167 . 2 Moore = (𝑥 ∈ V ↦ {𝑐 ∈ 𝒫 𝒫 𝑥 ∣ (𝑥𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → 𝑠𝑐))})
53, 4fnmpti 5979 1 Moore Fn V
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wcel 1987  wne 2790  wral 2907  {crab 2911  Vcvv 3186  c0 3891  𝒫 cpw 4130   cint 4440   Fn wfn 5842  Moorecmre 16163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2912  df-rab 2916  df-v 3188  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-fun 5849  df-fn 5850  df-mre 16167
This theorem is referenced by:  mreunirn  16182
  Copyright terms: Public domain W3C validator