![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnopabg | Structured version Visualization version GIF version |
Description: Functionality and domain of an ordered-pair class abstraction. (Contributed by NM, 30-Jan-2004.) (Proof shortened by Mario Carneiro, 4-Dec-2016.) |
Ref | Expression |
---|---|
fnopabg.1 | ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
Ref | Expression |
---|---|
fnopabg | ⊢ (∀𝑥 ∈ 𝐴 ∃!𝑦𝜑 ↔ 𝐹 Fn 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | moanimv 2669 | . . . . . 6 ⊢ (∃*𝑦(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 → ∃*𝑦𝜑)) | |
2 | 1 | albii 1896 | . . . . 5 ⊢ (∀𝑥∃*𝑦(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∃*𝑦𝜑)) |
3 | funopab 6084 | . . . . 5 ⊢ (Fun {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ↔ ∀𝑥∃*𝑦(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
4 | df-ral 3055 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 ∃*𝑦𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∃*𝑦𝜑)) | |
5 | 2, 3, 4 | 3bitr4ri 293 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ∃*𝑦𝜑 ↔ Fun {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)}) |
6 | dmopab3 5492 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = 𝐴) | |
7 | 5, 6 | anbi12i 735 | . . 3 ⊢ ((∀𝑥 ∈ 𝐴 ∃*𝑦𝜑 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦𝜑) ↔ (Fun {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∧ dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = 𝐴)) |
8 | r19.26 3202 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (∃*𝑦𝜑 ∧ ∃𝑦𝜑) ↔ (∀𝑥 ∈ 𝐴 ∃*𝑦𝜑 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦𝜑)) | |
9 | df-fn 6052 | . . 3 ⊢ ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} Fn 𝐴 ↔ (Fun {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∧ dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = 𝐴)) | |
10 | 7, 8, 9 | 3bitr4i 292 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (∃*𝑦𝜑 ∧ ∃𝑦𝜑) ↔ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} Fn 𝐴) |
11 | eu5 2633 | . . . 4 ⊢ (∃!𝑦𝜑 ↔ (∃𝑦𝜑 ∧ ∃*𝑦𝜑)) | |
12 | ancom 465 | . . . 4 ⊢ ((∃𝑦𝜑 ∧ ∃*𝑦𝜑) ↔ (∃*𝑦𝜑 ∧ ∃𝑦𝜑)) | |
13 | 11, 12 | bitri 264 | . . 3 ⊢ (∃!𝑦𝜑 ↔ (∃*𝑦𝜑 ∧ ∃𝑦𝜑)) |
14 | 13 | ralbii 3118 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∃!𝑦𝜑 ↔ ∀𝑥 ∈ 𝐴 (∃*𝑦𝜑 ∧ ∃𝑦𝜑)) |
15 | fnopabg.1 | . . 3 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
16 | 15 | fneq1i 6146 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} Fn 𝐴) |
17 | 10, 14, 16 | 3bitr4i 292 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∃!𝑦𝜑 ↔ 𝐹 Fn 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∀wal 1630 = wceq 1632 ∃wex 1853 ∈ wcel 2139 ∃!weu 2607 ∃*wmo 2608 ∀wral 3050 {copab 4864 dom cdm 5266 Fun wfun 6043 Fn wfn 6044 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-br 4805 df-opab 4865 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-fun 6051 df-fn 6052 |
This theorem is referenced by: fnopab 6179 mptfng 6180 axcontlem2 26044 |
Copyright terms: Public domain | W3C validator |