MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnopabg Structured version   Visualization version   GIF version

Theorem fnopabg 6178
Description: Functionality and domain of an ordered-pair class abstraction. (Contributed by NM, 30-Jan-2004.) (Proof shortened by Mario Carneiro, 4-Dec-2016.)
Hypothesis
Ref Expression
fnopabg.1 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)}
Assertion
Ref Expression
fnopabg (∀𝑥𝐴 ∃!𝑦𝜑𝐹 Fn 𝐴)
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem fnopabg
StepHypRef Expression
1 moanimv 2669 . . . . . 6 (∃*𝑦(𝑥𝐴𝜑) ↔ (𝑥𝐴 → ∃*𝑦𝜑))
21albii 1896 . . . . 5 (∀𝑥∃*𝑦(𝑥𝐴𝜑) ↔ ∀𝑥(𝑥𝐴 → ∃*𝑦𝜑))
3 funopab 6084 . . . . 5 (Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} ↔ ∀𝑥∃*𝑦(𝑥𝐴𝜑))
4 df-ral 3055 . . . . 5 (∀𝑥𝐴 ∃*𝑦𝜑 ↔ ∀𝑥(𝑥𝐴 → ∃*𝑦𝜑))
52, 3, 43bitr4ri 293 . . . 4 (∀𝑥𝐴 ∃*𝑦𝜑 ↔ Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)})
6 dmopab3 5492 . . . 4 (∀𝑥𝐴𝑦𝜑 ↔ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} = 𝐴)
75, 6anbi12i 735 . . 3 ((∀𝑥𝐴 ∃*𝑦𝜑 ∧ ∀𝑥𝐴𝑦𝜑) ↔ (Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} ∧ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} = 𝐴))
8 r19.26 3202 . . 3 (∀𝑥𝐴 (∃*𝑦𝜑 ∧ ∃𝑦𝜑) ↔ (∀𝑥𝐴 ∃*𝑦𝜑 ∧ ∀𝑥𝐴𝑦𝜑))
9 df-fn 6052 . . 3 ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} Fn 𝐴 ↔ (Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} ∧ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} = 𝐴))
107, 8, 93bitr4i 292 . 2 (∀𝑥𝐴 (∃*𝑦𝜑 ∧ ∃𝑦𝜑) ↔ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} Fn 𝐴)
11 eu5 2633 . . . 4 (∃!𝑦𝜑 ↔ (∃𝑦𝜑 ∧ ∃*𝑦𝜑))
12 ancom 465 . . . 4 ((∃𝑦𝜑 ∧ ∃*𝑦𝜑) ↔ (∃*𝑦𝜑 ∧ ∃𝑦𝜑))
1311, 12bitri 264 . . 3 (∃!𝑦𝜑 ↔ (∃*𝑦𝜑 ∧ ∃𝑦𝜑))
1413ralbii 3118 . 2 (∀𝑥𝐴 ∃!𝑦𝜑 ↔ ∀𝑥𝐴 (∃*𝑦𝜑 ∧ ∃𝑦𝜑))
15 fnopabg.1 . . 3 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)}
1615fneq1i 6146 . 2 (𝐹 Fn 𝐴 ↔ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} Fn 𝐴)
1710, 14, 163bitr4i 292 1 (∀𝑥𝐴 ∃!𝑦𝜑𝐹 Fn 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  wal 1630   = wceq 1632  wex 1853  wcel 2139  ∃!weu 2607  ∃*wmo 2608  wral 3050  {copab 4864  dom cdm 5266  Fun wfun 6043   Fn wfn 6044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pr 5055
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-rab 3059  df-v 3342  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-br 4805  df-opab 4865  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-fun 6051  df-fn 6052
This theorem is referenced by:  fnopab  6179  mptfng  6180  axcontlem2  26044
  Copyright terms: Public domain W3C validator