MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnres Structured version   Visualization version   GIF version

Theorem fnres 6467
Description: An equivalence for functionality of a restriction. Compare dffun8 6376. (Contributed by Mario Carneiro, 20-May-2015.) (Proof shortened by Peter Mazsa, 2-Oct-2022.)
Assertion
Ref Expression
fnres ((𝐹𝐴) Fn 𝐴 ↔ ∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦

Proof of Theorem fnres
StepHypRef Expression
1 ancom 461 . . 3 ((∀𝑥𝐴 ∃*𝑦 𝑥𝐹𝑦 ∧ ∀𝑥𝐴𝑦 𝑥𝐹𝑦) ↔ (∀𝑥𝐴𝑦 𝑥𝐹𝑦 ∧ ∀𝑥𝐴 ∃*𝑦 𝑥𝐹𝑦))
2 vex 3495 . . . . . . . . 9 𝑦 ∈ V
32brresi 5855 . . . . . . . 8 (𝑥(𝐹𝐴)𝑦 ↔ (𝑥𝐴𝑥𝐹𝑦))
43mobii 2624 . . . . . . 7 (∃*𝑦 𝑥(𝐹𝐴)𝑦 ↔ ∃*𝑦(𝑥𝐴𝑥𝐹𝑦))
5 moanimv 2697 . . . . . . 7 (∃*𝑦(𝑥𝐴𝑥𝐹𝑦) ↔ (𝑥𝐴 → ∃*𝑦 𝑥𝐹𝑦))
64, 5bitri 276 . . . . . 6 (∃*𝑦 𝑥(𝐹𝐴)𝑦 ↔ (𝑥𝐴 → ∃*𝑦 𝑥𝐹𝑦))
76albii 1811 . . . . 5 (∀𝑥∃*𝑦 𝑥(𝐹𝐴)𝑦 ↔ ∀𝑥(𝑥𝐴 → ∃*𝑦 𝑥𝐹𝑦))
8 relres 5875 . . . . . 6 Rel (𝐹𝐴)
9 dffun6 6363 . . . . . 6 (Fun (𝐹𝐴) ↔ (Rel (𝐹𝐴) ∧ ∀𝑥∃*𝑦 𝑥(𝐹𝐴)𝑦))
108, 9mpbiran 705 . . . . 5 (Fun (𝐹𝐴) ↔ ∀𝑥∃*𝑦 𝑥(𝐹𝐴)𝑦)
11 df-ral 3140 . . . . 5 (∀𝑥𝐴 ∃*𝑦 𝑥𝐹𝑦 ↔ ∀𝑥(𝑥𝐴 → ∃*𝑦 𝑥𝐹𝑦))
127, 10, 113bitr4i 304 . . . 4 (Fun (𝐹𝐴) ↔ ∀𝑥𝐴 ∃*𝑦 𝑥𝐹𝑦)
13 dmres 5868 . . . . . . 7 dom (𝐹𝐴) = (𝐴 ∩ dom 𝐹)
14 inss1 4202 . . . . . . 7 (𝐴 ∩ dom 𝐹) ⊆ 𝐴
1513, 14eqsstri 3998 . . . . . 6 dom (𝐹𝐴) ⊆ 𝐴
16 eqss 3979 . . . . . 6 (dom (𝐹𝐴) = 𝐴 ↔ (dom (𝐹𝐴) ⊆ 𝐴𝐴 ⊆ dom (𝐹𝐴)))
1715, 16mpbiran 705 . . . . 5 (dom (𝐹𝐴) = 𝐴𝐴 ⊆ dom (𝐹𝐴))
18 dfss3 3953 . . . . . 6 (𝐴 ⊆ dom (𝐹𝐴) ↔ ∀𝑥𝐴 𝑥 ∈ dom (𝐹𝐴))
1913elin2 4171 . . . . . . . . 9 (𝑥 ∈ dom (𝐹𝐴) ↔ (𝑥𝐴𝑥 ∈ dom 𝐹))
2019baib 536 . . . . . . . 8 (𝑥𝐴 → (𝑥 ∈ dom (𝐹𝐴) ↔ 𝑥 ∈ dom 𝐹))
21 vex 3495 . . . . . . . . 9 𝑥 ∈ V
2221eldm 5762 . . . . . . . 8 (𝑥 ∈ dom 𝐹 ↔ ∃𝑦 𝑥𝐹𝑦)
2320, 22syl6bb 288 . . . . . . 7 (𝑥𝐴 → (𝑥 ∈ dom (𝐹𝐴) ↔ ∃𝑦 𝑥𝐹𝑦))
2423ralbiia 3161 . . . . . 6 (∀𝑥𝐴 𝑥 ∈ dom (𝐹𝐴) ↔ ∀𝑥𝐴𝑦 𝑥𝐹𝑦)
2518, 24bitri 276 . . . . 5 (𝐴 ⊆ dom (𝐹𝐴) ↔ ∀𝑥𝐴𝑦 𝑥𝐹𝑦)
2617, 25bitri 276 . . . 4 (dom (𝐹𝐴) = 𝐴 ↔ ∀𝑥𝐴𝑦 𝑥𝐹𝑦)
2712, 26anbi12i 626 . . 3 ((Fun (𝐹𝐴) ∧ dom (𝐹𝐴) = 𝐴) ↔ (∀𝑥𝐴 ∃*𝑦 𝑥𝐹𝑦 ∧ ∀𝑥𝐴𝑦 𝑥𝐹𝑦))
28 r19.26 3167 . . 3 (∀𝑥𝐴 (∃𝑦 𝑥𝐹𝑦 ∧ ∃*𝑦 𝑥𝐹𝑦) ↔ (∀𝑥𝐴𝑦 𝑥𝐹𝑦 ∧ ∀𝑥𝐴 ∃*𝑦 𝑥𝐹𝑦))
291, 27, 283bitr4i 304 . 2 ((Fun (𝐹𝐴) ∧ dom (𝐹𝐴) = 𝐴) ↔ ∀𝑥𝐴 (∃𝑦 𝑥𝐹𝑦 ∧ ∃*𝑦 𝑥𝐹𝑦))
30 df-fn 6351 . 2 ((𝐹𝐴) Fn 𝐴 ↔ (Fun (𝐹𝐴) ∧ dom (𝐹𝐴) = 𝐴))
31 df-eu 2647 . . 3 (∃!𝑦 𝑥𝐹𝑦 ↔ (∃𝑦 𝑥𝐹𝑦 ∧ ∃*𝑦 𝑥𝐹𝑦))
3231ralbii 3162 . 2 (∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦 ↔ ∀𝑥𝐴 (∃𝑦 𝑥𝐹𝑦 ∧ ∃*𝑦 𝑥𝐹𝑦))
3329, 30, 323bitr4i 304 1 ((𝐹𝐴) Fn 𝐴 ↔ ∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  wal 1526   = wceq 1528  wex 1771  wcel 2105  ∃*wmo 2613  ∃!weu 2646  wral 3135  cin 3932  wss 3933   class class class wbr 5057  dom cdm 5548  cres 5550  Rel wrel 5553  Fun wfun 6342   Fn wfn 6343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pr 5320
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-sn 4558  df-pr 4560  df-op 4564  df-br 5058  df-opab 5120  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-res 5560  df-fun 6350  df-fn 6351
This theorem is referenced by:  f1ompt  6867  omxpenlem  8606  tz6.12-afv  43249  tz6.12-afv2  43316
  Copyright terms: Public domain W3C validator