Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnrnfv Structured version   Visualization version   GIF version

Theorem fnrnfv 6400
 Description: The range of a function expressed as a collection of the function's values. (Contributed by NM, 20-Oct-2005.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
fnrnfv (𝐹 Fn 𝐴 → ran 𝐹 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)})
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦

Proof of Theorem fnrnfv
StepHypRef Expression
1 dffn5 6399 . . 3 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
2 rneq 5502 . . 3 (𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)) → ran 𝐹 = ran (𝑥𝐴 ↦ (𝐹𝑥)))
31, 2sylbi 207 . 2 (𝐹 Fn 𝐴 → ran 𝐹 = ran (𝑥𝐴 ↦ (𝐹𝑥)))
4 eqid 2756 . . 3 (𝑥𝐴 ↦ (𝐹𝑥)) = (𝑥𝐴 ↦ (𝐹𝑥))
54rnmpt 5522 . 2 ran (𝑥𝐴 ↦ (𝐹𝑥)) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)}
63, 5syl6eq 2806 1 (𝐹 Fn 𝐴 → ran 𝐹 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1628  {cab 2742  ∃wrex 3047   ↦ cmpt 4877  ran crn 5263   Fn wfn 6040  ‘cfv 6045 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1867  ax-4 1882  ax-5 1984  ax-6 2050  ax-7 2086  ax-9 2144  ax-10 2164  ax-11 2179  ax-12 2192  ax-13 2387  ax-ext 2736  ax-sep 4929  ax-nul 4937  ax-pr 5051 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1631  df-ex 1850  df-nf 1855  df-sb 2043  df-eu 2607  df-mo 2608  df-clab 2743  df-cleq 2749  df-clel 2752  df-nfc 2887  df-ral 3051  df-rex 3052  df-rab 3055  df-v 3338  df-sbc 3573  df-dif 3714  df-un 3716  df-in 3718  df-ss 3725  df-nul 4055  df-if 4227  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4585  df-br 4801  df-opab 4861  df-mpt 4878  df-id 5170  df-xp 5268  df-rel 5269  df-cnv 5270  df-co 5271  df-dm 5272  df-rn 5273  df-iota 6008  df-fun 6047  df-fn 6048  df-fv 6053 This theorem is referenced by:  fvelrnb  6401  fniinfv  6415  dffo3  6533  fniunfv  6664  fnrnov  6968  pwcfsdom  9593  hauscmplem  21407  grpoinvf  27691  fpwrelmapffslem  29812  meascnbl  30587  omssubadd  30667  dffo3f  39859  rnfdmpr  41804  fargshiftfo  41884
 Copyright terms: Public domain W3C validator