MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnrnfv Structured version   Visualization version   GIF version

Theorem fnrnfv 6199
Description: The range of a function expressed as a collection of the function's values. (Contributed by NM, 20-Oct-2005.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
fnrnfv (𝐹 Fn 𝐴 → ran 𝐹 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)})
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦

Proof of Theorem fnrnfv
StepHypRef Expression
1 dffn5 6198 . . 3 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
2 rneq 5311 . . 3 (𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)) → ran 𝐹 = ran (𝑥𝐴 ↦ (𝐹𝑥)))
31, 2sylbi 207 . 2 (𝐹 Fn 𝐴 → ran 𝐹 = ran (𝑥𝐴 ↦ (𝐹𝑥)))
4 eqid 2621 . . 3 (𝑥𝐴 ↦ (𝐹𝑥)) = (𝑥𝐴 ↦ (𝐹𝑥))
54rnmpt 5331 . 2 ran (𝑥𝐴 ↦ (𝐹𝑥)) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)}
63, 5syl6eq 2671 1 (𝐹 Fn 𝐴 → ran 𝐹 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1480  {cab 2607  wrex 2908  cmpt 4673  ran crn 5075   Fn wfn 5842  cfv 5847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pr 4867
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-iota 5810  df-fun 5849  df-fn 5850  df-fv 5855
This theorem is referenced by:  fvelrnb  6200  fniinfv  6214  dffo3  6330  fniunfv  6459  fnrnov  6760  pwcfsdom  9349  hauscmplem  21119  grpoinvf  27232  fpwrelmapffslem  29347  meascnbl  30060  omssubadd  30140  dffo3f  38835  rnfdmpr  40594  fargshiftfo  40673
  Copyright terms: Public domain W3C validator