MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnse Structured version   Visualization version   GIF version

Theorem fnse 7818
Description: Condition for the well-order in fnwe 7817 to be set-like. (Contributed by Mario Carneiro, 25-Jun-2015.)
Hypotheses
Ref Expression
fnse.1 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥)𝑅(𝐹𝑦) ∨ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑆𝑦)))}
fnse.2 (𝜑𝐹:𝐴𝐵)
fnse.3 (𝜑𝑅 Se 𝐵)
fnse.4 (𝜑 → (𝐹𝑤) ∈ V)
Assertion
Ref Expression
fnse (𝜑𝑇 Se 𝐴)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑤,𝐵   𝑥,𝑤,𝑦,𝐹   𝜑,𝑤   𝑤,𝑅,𝑥,𝑦   𝑥,𝑆,𝑦   𝑤,𝑇
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑤)   𝐵(𝑥,𝑦)   𝑆(𝑤)   𝑇(𝑥,𝑦)

Proof of Theorem fnse
Dummy variables 𝑧 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnse.3 . . . . . . 7 (𝜑𝑅 Se 𝐵)
2 fnse.2 . . . . . . . 8 (𝜑𝐹:𝐴𝐵)
32ffvelrnda 6844 . . . . . . 7 ((𝜑𝑧𝐴) → (𝐹𝑧) ∈ 𝐵)
4 seex 5512 . . . . . . 7 ((𝑅 Se 𝐵 ∧ (𝐹𝑧) ∈ 𝐵) → {𝑢𝐵𝑢𝑅(𝐹𝑧)} ∈ V)
51, 3, 4syl2an2r 681 . . . . . 6 ((𝜑𝑧𝐴) → {𝑢𝐵𝑢𝑅(𝐹𝑧)} ∈ V)
6 snex 5323 . . . . . 6 {(𝐹𝑧)} ∈ V
7 unexg 7460 . . . . . 6 (({𝑢𝐵𝑢𝑅(𝐹𝑧)} ∈ V ∧ {(𝐹𝑧)} ∈ V) → ({𝑢𝐵𝑢𝑅(𝐹𝑧)} ∪ {(𝐹𝑧)}) ∈ V)
85, 6, 7sylancl 586 . . . . 5 ((𝜑𝑧𝐴) → ({𝑢𝐵𝑢𝑅(𝐹𝑧)} ∪ {(𝐹𝑧)}) ∈ V)
9 imaeq2 5919 . . . . . . . . 9 (𝑤 = ({𝑢𝐵𝑢𝑅(𝐹𝑧)} ∪ {(𝐹𝑧)}) → (𝐹𝑤) = (𝐹 “ ({𝑢𝐵𝑢𝑅(𝐹𝑧)} ∪ {(𝐹𝑧)})))
109eleq1d 2897 . . . . . . . 8 (𝑤 = ({𝑢𝐵𝑢𝑅(𝐹𝑧)} ∪ {(𝐹𝑧)}) → ((𝐹𝑤) ∈ V ↔ (𝐹 “ ({𝑢𝐵𝑢𝑅(𝐹𝑧)} ∪ {(𝐹𝑧)})) ∈ V))
1110imbi2d 342 . . . . . . 7 (𝑤 = ({𝑢𝐵𝑢𝑅(𝐹𝑧)} ∪ {(𝐹𝑧)}) → ((𝜑 → (𝐹𝑤) ∈ V) ↔ (𝜑 → (𝐹 “ ({𝑢𝐵𝑢𝑅(𝐹𝑧)} ∪ {(𝐹𝑧)})) ∈ V)))
12 fnse.4 . . . . . . 7 (𝜑 → (𝐹𝑤) ∈ V)
1311, 12vtoclg 3568 . . . . . 6 (({𝑢𝐵𝑢𝑅(𝐹𝑧)} ∪ {(𝐹𝑧)}) ∈ V → (𝜑 → (𝐹 “ ({𝑢𝐵𝑢𝑅(𝐹𝑧)} ∪ {(𝐹𝑧)})) ∈ V))
1413impcom 408 . . . . 5 ((𝜑 ∧ ({𝑢𝐵𝑢𝑅(𝐹𝑧)} ∪ {(𝐹𝑧)}) ∈ V) → (𝐹 “ ({𝑢𝐵𝑢𝑅(𝐹𝑧)} ∪ {(𝐹𝑧)})) ∈ V)
158, 14syldan 591 . . . 4 ((𝜑𝑧𝐴) → (𝐹 “ ({𝑢𝐵𝑢𝑅(𝐹𝑧)} ∪ {(𝐹𝑧)})) ∈ V)
16 inss2 4205 . . . . . 6 (𝐴 ∩ (𝑇 “ {𝑧})) ⊆ (𝑇 “ {𝑧})
17 vex 3498 . . . . . . . . . 10 𝑤 ∈ V
1817eliniseg 5952 . . . . . . . . 9 (𝑧 ∈ V → (𝑤 ∈ (𝑇 “ {𝑧}) ↔ 𝑤𝑇𝑧))
1918elv 3500 . . . . . . . 8 (𝑤 ∈ (𝑇 “ {𝑧}) ↔ 𝑤𝑇𝑧)
20 fveq2 6664 . . . . . . . . . . . 12 (𝑥 = 𝑤 → (𝐹𝑥) = (𝐹𝑤))
21 fveq2 6664 . . . . . . . . . . . 12 (𝑦 = 𝑧 → (𝐹𝑦) = (𝐹𝑧))
2220, 21breqan12d 5074 . . . . . . . . . . 11 ((𝑥 = 𝑤𝑦 = 𝑧) → ((𝐹𝑥)𝑅(𝐹𝑦) ↔ (𝐹𝑤)𝑅(𝐹𝑧)))
2320, 21eqeqan12d 2838 . . . . . . . . . . . 12 ((𝑥 = 𝑤𝑦 = 𝑧) → ((𝐹𝑥) = (𝐹𝑦) ↔ (𝐹𝑤) = (𝐹𝑧)))
24 breq12 5063 . . . . . . . . . . . 12 ((𝑥 = 𝑤𝑦 = 𝑧) → (𝑥𝑆𝑦𝑤𝑆𝑧))
2523, 24anbi12d 630 . . . . . . . . . . 11 ((𝑥 = 𝑤𝑦 = 𝑧) → (((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑆𝑦) ↔ ((𝐹𝑤) = (𝐹𝑧) ∧ 𝑤𝑆𝑧)))
2622, 25orbi12d 912 . . . . . . . . . 10 ((𝑥 = 𝑤𝑦 = 𝑧) → (((𝐹𝑥)𝑅(𝐹𝑦) ∨ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑆𝑦)) ↔ ((𝐹𝑤)𝑅(𝐹𝑧) ∨ ((𝐹𝑤) = (𝐹𝑧) ∧ 𝑤𝑆𝑧))))
27 fnse.1 . . . . . . . . . 10 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥)𝑅(𝐹𝑦) ∨ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑆𝑦)))}
2826, 27brab2a 5638 . . . . . . . . 9 (𝑤𝑇𝑧 ↔ ((𝑤𝐴𝑧𝐴) ∧ ((𝐹𝑤)𝑅(𝐹𝑧) ∨ ((𝐹𝑤) = (𝐹𝑧) ∧ 𝑤𝑆𝑧))))
292ffvelrnda 6844 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤𝐴) → (𝐹𝑤) ∈ 𝐵)
3029adantrr 713 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑤𝐴𝑧𝐴)) → (𝐹𝑤) ∈ 𝐵)
31 breq1 5061 . . . . . . . . . . . . . . . . 17 (𝑢 = (𝐹𝑤) → (𝑢𝑅(𝐹𝑧) ↔ (𝐹𝑤)𝑅(𝐹𝑧)))
3231elrab3 3680 . . . . . . . . . . . . . . . 16 ((𝐹𝑤) ∈ 𝐵 → ((𝐹𝑤) ∈ {𝑢𝐵𝑢𝑅(𝐹𝑧)} ↔ (𝐹𝑤)𝑅(𝐹𝑧)))
3330, 32syl 17 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑤𝐴𝑧𝐴)) → ((𝐹𝑤) ∈ {𝑢𝐵𝑢𝑅(𝐹𝑧)} ↔ (𝐹𝑤)𝑅(𝐹𝑧)))
3433biimprd 249 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑤𝐴𝑧𝐴)) → ((𝐹𝑤)𝑅(𝐹𝑧) → (𝐹𝑤) ∈ {𝑢𝐵𝑢𝑅(𝐹𝑧)}))
35 simpl 483 . . . . . . . . . . . . . . . 16 (((𝐹𝑤) = (𝐹𝑧) ∧ 𝑤𝑆𝑧) → (𝐹𝑤) = (𝐹𝑧))
36 fvex 6677 . . . . . . . . . . . . . . . . 17 (𝐹𝑤) ∈ V
3736elsn 4574 . . . . . . . . . . . . . . . 16 ((𝐹𝑤) ∈ {(𝐹𝑧)} ↔ (𝐹𝑤) = (𝐹𝑧))
3835, 37sylibr 235 . . . . . . . . . . . . . . 15 (((𝐹𝑤) = (𝐹𝑧) ∧ 𝑤𝑆𝑧) → (𝐹𝑤) ∈ {(𝐹𝑧)})
3938a1i 11 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑤𝐴𝑧𝐴)) → (((𝐹𝑤) = (𝐹𝑧) ∧ 𝑤𝑆𝑧) → (𝐹𝑤) ∈ {(𝐹𝑧)}))
4034, 39orim12d 958 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑤𝐴𝑧𝐴)) → (((𝐹𝑤)𝑅(𝐹𝑧) ∨ ((𝐹𝑤) = (𝐹𝑧) ∧ 𝑤𝑆𝑧)) → ((𝐹𝑤) ∈ {𝑢𝐵𝑢𝑅(𝐹𝑧)} ∨ (𝐹𝑤) ∈ {(𝐹𝑧)})))
41 elun 4124 . . . . . . . . . . . . 13 ((𝐹𝑤) ∈ ({𝑢𝐵𝑢𝑅(𝐹𝑧)} ∪ {(𝐹𝑧)}) ↔ ((𝐹𝑤) ∈ {𝑢𝐵𝑢𝑅(𝐹𝑧)} ∨ (𝐹𝑤) ∈ {(𝐹𝑧)}))
4240, 41syl6ibr 253 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑤𝐴𝑧𝐴)) → (((𝐹𝑤)𝑅(𝐹𝑧) ∨ ((𝐹𝑤) = (𝐹𝑧) ∧ 𝑤𝑆𝑧)) → (𝐹𝑤) ∈ ({𝑢𝐵𝑢𝑅(𝐹𝑧)} ∪ {(𝐹𝑧)})))
43 simprl 767 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑤𝐴𝑧𝐴)) → 𝑤𝐴)
4442, 43jctild 526 . . . . . . . . . . 11 ((𝜑 ∧ (𝑤𝐴𝑧𝐴)) → (((𝐹𝑤)𝑅(𝐹𝑧) ∨ ((𝐹𝑤) = (𝐹𝑧) ∧ 𝑤𝑆𝑧)) → (𝑤𝐴 ∧ (𝐹𝑤) ∈ ({𝑢𝐵𝑢𝑅(𝐹𝑧)} ∪ {(𝐹𝑧)}))))
452ffnd 6509 . . . . . . . . . . . . 13 (𝜑𝐹 Fn 𝐴)
4645adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑤𝐴𝑧𝐴)) → 𝐹 Fn 𝐴)
47 elpreima 6821 . . . . . . . . . . . 12 (𝐹 Fn 𝐴 → (𝑤 ∈ (𝐹 “ ({𝑢𝐵𝑢𝑅(𝐹𝑧)} ∪ {(𝐹𝑧)})) ↔ (𝑤𝐴 ∧ (𝐹𝑤) ∈ ({𝑢𝐵𝑢𝑅(𝐹𝑧)} ∪ {(𝐹𝑧)}))))
4846, 47syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑤𝐴𝑧𝐴)) → (𝑤 ∈ (𝐹 “ ({𝑢𝐵𝑢𝑅(𝐹𝑧)} ∪ {(𝐹𝑧)})) ↔ (𝑤𝐴 ∧ (𝐹𝑤) ∈ ({𝑢𝐵𝑢𝑅(𝐹𝑧)} ∪ {(𝐹𝑧)}))))
4944, 48sylibrd 260 . . . . . . . . . 10 ((𝜑 ∧ (𝑤𝐴𝑧𝐴)) → (((𝐹𝑤)𝑅(𝐹𝑧) ∨ ((𝐹𝑤) = (𝐹𝑧) ∧ 𝑤𝑆𝑧)) → 𝑤 ∈ (𝐹 “ ({𝑢𝐵𝑢𝑅(𝐹𝑧)} ∪ {(𝐹𝑧)}))))
5049expimpd 454 . . . . . . . . 9 (𝜑 → (((𝑤𝐴𝑧𝐴) ∧ ((𝐹𝑤)𝑅(𝐹𝑧) ∨ ((𝐹𝑤) = (𝐹𝑧) ∧ 𝑤𝑆𝑧))) → 𝑤 ∈ (𝐹 “ ({𝑢𝐵𝑢𝑅(𝐹𝑧)} ∪ {(𝐹𝑧)}))))
5128, 50syl5bi 243 . . . . . . . 8 (𝜑 → (𝑤𝑇𝑧𝑤 ∈ (𝐹 “ ({𝑢𝐵𝑢𝑅(𝐹𝑧)} ∪ {(𝐹𝑧)}))))
5219, 51syl5bi 243 . . . . . . 7 (𝜑 → (𝑤 ∈ (𝑇 “ {𝑧}) → 𝑤 ∈ (𝐹 “ ({𝑢𝐵𝑢𝑅(𝐹𝑧)} ∪ {(𝐹𝑧)}))))
5352ssrdv 3972 . . . . . 6 (𝜑 → (𝑇 “ {𝑧}) ⊆ (𝐹 “ ({𝑢𝐵𝑢𝑅(𝐹𝑧)} ∪ {(𝐹𝑧)})))
5416, 53sstrid 3977 . . . . 5 (𝜑 → (𝐴 ∩ (𝑇 “ {𝑧})) ⊆ (𝐹 “ ({𝑢𝐵𝑢𝑅(𝐹𝑧)} ∪ {(𝐹𝑧)})))
5554adantr 481 . . . 4 ((𝜑𝑧𝐴) → (𝐴 ∩ (𝑇 “ {𝑧})) ⊆ (𝐹 “ ({𝑢𝐵𝑢𝑅(𝐹𝑧)} ∪ {(𝐹𝑧)})))
5615, 55ssexd 5220 . . 3 ((𝜑𝑧𝐴) → (𝐴 ∩ (𝑇 “ {𝑧})) ∈ V)
5756ralrimiva 3182 . 2 (𝜑 → ∀𝑧𝐴 (𝐴 ∩ (𝑇 “ {𝑧})) ∈ V)
58 dfse2 5957 . 2 (𝑇 Se 𝐴 ↔ ∀𝑧𝐴 (𝐴 ∩ (𝑇 “ {𝑧})) ∈ V)
5957, 58sylibr 235 1 (𝜑𝑇 Se 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  wo 841   = wceq 1528  wcel 2105  wral 3138  {crab 3142  Vcvv 3495  cun 3933  cin 3934  wss 3935  {csn 4559   class class class wbr 5058  {copab 5120   Se wse 5506  ccnv 5548  cima 5552   Fn wfn 6344  wf 6345  cfv 6349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pr 5321  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3497  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4466  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4833  df-br 5059  df-opab 5121  df-id 5454  df-se 5509  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-fv 6357
This theorem is referenced by:  r0weon  9427
  Copyright terms: Public domain W3C validator