MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnsnb Structured version   Visualization version   GIF version

Theorem fnsnb 6921
Description: A function whose domain is a singleton can be represented as a singleton of an ordered pair. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) Revised to add reverse implication. (Revised by NM, 29-Dec-2018.)
Hypothesis
Ref Expression
fnsnb.1 𝐴 ∈ V
Assertion
Ref Expression
fnsnb (𝐹 Fn {𝐴} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩})

Proof of Theorem fnsnb
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fnsnr 6920 . . . . 5 (𝐹 Fn {𝐴} → (𝑥𝐹𝑥 = ⟨𝐴, (𝐹𝐴)⟩))
2 df-fn 6352 . . . . . . . 8 (𝐹 Fn {𝐴} ↔ (Fun 𝐹 ∧ dom 𝐹 = {𝐴}))
3 fnsnb.1 . . . . . . . . . . 11 𝐴 ∈ V
43snid 4593 . . . . . . . . . 10 𝐴 ∈ {𝐴}
5 eleq2 2901 . . . . . . . . . 10 (dom 𝐹 = {𝐴} → (𝐴 ∈ dom 𝐹𝐴 ∈ {𝐴}))
64, 5mpbiri 259 . . . . . . . . 9 (dom 𝐹 = {𝐴} → 𝐴 ∈ dom 𝐹)
76anim2i 616 . . . . . . . 8 ((Fun 𝐹 ∧ dom 𝐹 = {𝐴}) → (Fun 𝐹𝐴 ∈ dom 𝐹))
82, 7sylbi 218 . . . . . . 7 (𝐹 Fn {𝐴} → (Fun 𝐹𝐴 ∈ dom 𝐹))
9 funfvop 6813 . . . . . . 7 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐹)
108, 9syl 17 . . . . . 6 (𝐹 Fn {𝐴} → ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐹)
11 eleq1 2900 . . . . . 6 (𝑥 = ⟨𝐴, (𝐹𝐴)⟩ → (𝑥𝐹 ↔ ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐹))
1210, 11syl5ibrcom 248 . . . . 5 (𝐹 Fn {𝐴} → (𝑥 = ⟨𝐴, (𝐹𝐴)⟩ → 𝑥𝐹))
131, 12impbid 213 . . . 4 (𝐹 Fn {𝐴} → (𝑥𝐹𝑥 = ⟨𝐴, (𝐹𝐴)⟩))
14 velsn 4575 . . . 4 (𝑥 ∈ {⟨𝐴, (𝐹𝐴)⟩} ↔ 𝑥 = ⟨𝐴, (𝐹𝐴)⟩)
1513, 14syl6bbr 290 . . 3 (𝐹 Fn {𝐴} → (𝑥𝐹𝑥 ∈ {⟨𝐴, (𝐹𝐴)⟩}))
1615eqrdv 2819 . 2 (𝐹 Fn {𝐴} → 𝐹 = {⟨𝐴, (𝐹𝐴)⟩})
17 fvex 6677 . . . 4 (𝐹𝐴) ∈ V
183, 17fnsn 6406 . . 3 {⟨𝐴, (𝐹𝐴)⟩} Fn {𝐴}
19 fneq1 6438 . . 3 (𝐹 = {⟨𝐴, (𝐹𝐴)⟩} → (𝐹 Fn {𝐴} ↔ {⟨𝐴, (𝐹𝐴)⟩} Fn {𝐴}))
2018, 19mpbiri 259 . 2 (𝐹 = {⟨𝐴, (𝐹𝐴)⟩} → 𝐹 Fn {𝐴})
2116, 20impbii 210 1 (𝐹 Fn {𝐴} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩})
Colors of variables: wff setvar class
Syntax hints:  wb 207  wa 396   = wceq 1528  wcel 2105  Vcvv 3495  {csn 4559  cop 4565  dom cdm 5549  Fun wfun 6343   Fn wfn 6344  cfv 6349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pr 5321
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4466  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4833  df-br 5059  df-opab 5121  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357
This theorem is referenced by:  fnprb  6963
  Copyright terms: Public domain W3C validator