MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnsuppres Structured version   Visualization version   GIF version

Theorem fnsuppres 7268
Description: Two ways to express restriction of a support set. (Contributed by Stefan O'Rear, 5-Feb-2015.) (Revised by AV, 28-May-2019.)
Assertion
Ref Expression
fnsuppres ((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) → ((𝐹 supp 𝑍) ⊆ 𝐴 ↔ (𝐹𝐵) = (𝐵 × {𝑍})))

Proof of Theorem fnsuppres
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 fndm 5950 . . . . . 6 (𝐹 Fn (𝐴𝐵) → dom 𝐹 = (𝐴𝐵))
2 rabeq 3184 . . . . . 6 (dom 𝐹 = (𝐴𝐵) → {𝑎 ∈ dom 𝐹 ∣ (𝐹𝑎) ≠ 𝑍} = {𝑎 ∈ (𝐴𝐵) ∣ (𝐹𝑎) ≠ 𝑍})
31, 2syl 17 . . . . 5 (𝐹 Fn (𝐴𝐵) → {𝑎 ∈ dom 𝐹 ∣ (𝐹𝑎) ≠ 𝑍} = {𝑎 ∈ (𝐴𝐵) ∣ (𝐹𝑎) ≠ 𝑍})
433ad2ant1 1080 . . . 4 ((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) → {𝑎 ∈ dom 𝐹 ∣ (𝐹𝑎) ≠ 𝑍} = {𝑎 ∈ (𝐴𝐵) ∣ (𝐹𝑎) ≠ 𝑍})
54sseq1d 3616 . . 3 ((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) → ({𝑎 ∈ dom 𝐹 ∣ (𝐹𝑎) ≠ 𝑍} ⊆ 𝐴 ↔ {𝑎 ∈ (𝐴𝐵) ∣ (𝐹𝑎) ≠ 𝑍} ⊆ 𝐴))
6 unss 3770 . . . . 5 (({𝑎𝐴 ∣ (𝐹𝑎) ≠ 𝑍} ⊆ 𝐴 ∧ {𝑎𝐵 ∣ (𝐹𝑎) ≠ 𝑍} ⊆ 𝐴) ↔ ({𝑎𝐴 ∣ (𝐹𝑎) ≠ 𝑍} ∪ {𝑎𝐵 ∣ (𝐹𝑎) ≠ 𝑍}) ⊆ 𝐴)
7 ssrab2 3671 . . . . . 6 {𝑎𝐴 ∣ (𝐹𝑎) ≠ 𝑍} ⊆ 𝐴
87biantrur 527 . . . . 5 ({𝑎𝐵 ∣ (𝐹𝑎) ≠ 𝑍} ⊆ 𝐴 ↔ ({𝑎𝐴 ∣ (𝐹𝑎) ≠ 𝑍} ⊆ 𝐴 ∧ {𝑎𝐵 ∣ (𝐹𝑎) ≠ 𝑍} ⊆ 𝐴))
9 rabun2 3887 . . . . . 6 {𝑎 ∈ (𝐴𝐵) ∣ (𝐹𝑎) ≠ 𝑍} = ({𝑎𝐴 ∣ (𝐹𝑎) ≠ 𝑍} ∪ {𝑎𝐵 ∣ (𝐹𝑎) ≠ 𝑍})
109sseq1i 3613 . . . . 5 ({𝑎 ∈ (𝐴𝐵) ∣ (𝐹𝑎) ≠ 𝑍} ⊆ 𝐴 ↔ ({𝑎𝐴 ∣ (𝐹𝑎) ≠ 𝑍} ∪ {𝑎𝐵 ∣ (𝐹𝑎) ≠ 𝑍}) ⊆ 𝐴)
116, 8, 103bitr4ri 293 . . . 4 ({𝑎 ∈ (𝐴𝐵) ∣ (𝐹𝑎) ≠ 𝑍} ⊆ 𝐴 ↔ {𝑎𝐵 ∣ (𝐹𝑎) ≠ 𝑍} ⊆ 𝐴)
12 rabss 3663 . . . . 5 ({𝑎𝐵 ∣ (𝐹𝑎) ≠ 𝑍} ⊆ 𝐴 ↔ ∀𝑎𝐵 ((𝐹𝑎) ≠ 𝑍𝑎𝐴))
13 fvres 6165 . . . . . . . . 9 (𝑎𝐵 → ((𝐹𝐵)‘𝑎) = (𝐹𝑎))
1413adantl 482 . . . . . . . 8 (((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) ∧ 𝑎𝐵) → ((𝐹𝐵)‘𝑎) = (𝐹𝑎))
15 simp2r 1086 . . . . . . . . 9 ((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) → 𝑍𝑉)
16 fvconst2g 6422 . . . . . . . . 9 ((𝑍𝑉𝑎𝐵) → ((𝐵 × {𝑍})‘𝑎) = 𝑍)
1715, 16sylan 488 . . . . . . . 8 (((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) ∧ 𝑎𝐵) → ((𝐵 × {𝑍})‘𝑎) = 𝑍)
1814, 17eqeq12d 2641 . . . . . . 7 (((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) ∧ 𝑎𝐵) → (((𝐹𝐵)‘𝑎) = ((𝐵 × {𝑍})‘𝑎) ↔ (𝐹𝑎) = 𝑍))
19 nne 2800 . . . . . . . 8 (¬ (𝐹𝑎) ≠ 𝑍 ↔ (𝐹𝑎) = 𝑍)
2019a1i 11 . . . . . . 7 (((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) ∧ 𝑎𝐵) → (¬ (𝐹𝑎) ≠ 𝑍 ↔ (𝐹𝑎) = 𝑍))
21 id 22 . . . . . . . . 9 (𝑎𝐵𝑎𝐵)
22 simp3 1061 . . . . . . . . 9 ((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) = ∅)
23 minel 4010 . . . . . . . . 9 ((𝑎𝐵 ∧ (𝐴𝐵) = ∅) → ¬ 𝑎𝐴)
2421, 22, 23syl2anr 495 . . . . . . . 8 (((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) ∧ 𝑎𝐵) → ¬ 𝑎𝐴)
25 mtt 354 . . . . . . . 8 𝑎𝐴 → (¬ (𝐹𝑎) ≠ 𝑍 ↔ ((𝐹𝑎) ≠ 𝑍𝑎𝐴)))
2624, 25syl 17 . . . . . . 7 (((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) ∧ 𝑎𝐵) → (¬ (𝐹𝑎) ≠ 𝑍 ↔ ((𝐹𝑎) ≠ 𝑍𝑎𝐴)))
2718, 20, 263bitr2rd 297 . . . . . 6 (((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) ∧ 𝑎𝐵) → (((𝐹𝑎) ≠ 𝑍𝑎𝐴) ↔ ((𝐹𝐵)‘𝑎) = ((𝐵 × {𝑍})‘𝑎)))
2827ralbidva 2984 . . . . 5 ((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) → (∀𝑎𝐵 ((𝐹𝑎) ≠ 𝑍𝑎𝐴) ↔ ∀𝑎𝐵 ((𝐹𝐵)‘𝑎) = ((𝐵 × {𝑍})‘𝑎)))
2912, 28syl5bb 272 . . . 4 ((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) → ({𝑎𝐵 ∣ (𝐹𝑎) ≠ 𝑍} ⊆ 𝐴 ↔ ∀𝑎𝐵 ((𝐹𝐵)‘𝑎) = ((𝐵 × {𝑍})‘𝑎)))
3011, 29syl5bb 272 . . 3 ((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) → ({𝑎 ∈ (𝐴𝐵) ∣ (𝐹𝑎) ≠ 𝑍} ⊆ 𝐴 ↔ ∀𝑎𝐵 ((𝐹𝐵)‘𝑎) = ((𝐵 × {𝑍})‘𝑎)))
315, 30bitrd 268 . 2 ((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) → ({𝑎 ∈ dom 𝐹 ∣ (𝐹𝑎) ≠ 𝑍} ⊆ 𝐴 ↔ ∀𝑎𝐵 ((𝐹𝐵)‘𝑎) = ((𝐵 × {𝑍})‘𝑎)))
32 fnfun 5948 . . . . . . 7 (𝐹 Fn (𝐴𝐵) → Fun 𝐹)
33323anim1i 1246 . . . . . 6 ((𝐹 Fn (𝐴𝐵) ∧ 𝐹𝑊𝑍𝑉) → (Fun 𝐹𝐹𝑊𝑍𝑉))
34333expb 1263 . . . . 5 ((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉)) → (Fun 𝐹𝐹𝑊𝑍𝑉))
35 suppval1 7247 . . . . 5 ((Fun 𝐹𝐹𝑊𝑍𝑉) → (𝐹 supp 𝑍) = {𝑎 ∈ dom 𝐹 ∣ (𝐹𝑎) ≠ 𝑍})
3634, 35syl 17 . . . 4 ((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉)) → (𝐹 supp 𝑍) = {𝑎 ∈ dom 𝐹 ∣ (𝐹𝑎) ≠ 𝑍})
37363adant3 1079 . . 3 ((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) → (𝐹 supp 𝑍) = {𝑎 ∈ dom 𝐹 ∣ (𝐹𝑎) ≠ 𝑍})
3837sseq1d 3616 . 2 ((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) → ((𝐹 supp 𝑍) ⊆ 𝐴 ↔ {𝑎 ∈ dom 𝐹 ∣ (𝐹𝑎) ≠ 𝑍} ⊆ 𝐴))
39 simp1 1059 . . . 4 ((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) → 𝐹 Fn (𝐴𝐵))
40 ssun2 3760 . . . . 5 𝐵 ⊆ (𝐴𝐵)
4140a1i 11 . . . 4 ((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) → 𝐵 ⊆ (𝐴𝐵))
42 fnssres 5964 . . . 4 ((𝐹 Fn (𝐴𝐵) ∧ 𝐵 ⊆ (𝐴𝐵)) → (𝐹𝐵) Fn 𝐵)
4339, 41, 42syl2anc 692 . . 3 ((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) → (𝐹𝐵) Fn 𝐵)
44 fnconstg 6052 . . . . 5 (𝑍𝑉 → (𝐵 × {𝑍}) Fn 𝐵)
4544adantl 482 . . . 4 ((𝐹𝑊𝑍𝑉) → (𝐵 × {𝑍}) Fn 𝐵)
46453ad2ant2 1081 . . 3 ((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) → (𝐵 × {𝑍}) Fn 𝐵)
47 eqfnfv 6268 . . 3 (((𝐹𝐵) Fn 𝐵 ∧ (𝐵 × {𝑍}) Fn 𝐵) → ((𝐹𝐵) = (𝐵 × {𝑍}) ↔ ∀𝑎𝐵 ((𝐹𝐵)‘𝑎) = ((𝐵 × {𝑍})‘𝑎)))
4843, 46, 47syl2anc 692 . 2 ((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) → ((𝐹𝐵) = (𝐵 × {𝑍}) ↔ ∀𝑎𝐵 ((𝐹𝐵)‘𝑎) = ((𝐵 × {𝑍})‘𝑎)))
4931, 38, 483bitr4d 300 1 ((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) → ((𝐹 supp 𝑍) ⊆ 𝐴 ↔ (𝐹𝐵) = (𝐵 × {𝑍})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1992  wne 2796  wral 2912  {crab 2916  cun 3558  cin 3559  wss 3560  c0 3896  {csn 4153   × cxp 5077  dom cdm 5079  cres 5081  Fun wfun 5844   Fn wfn 5845  cfv 5850  (class class class)co 6605   supp csupp 7241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3897  df-if 4064  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-fv 5858  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-supp 7242
This theorem is referenced by:  fnsuppeq0  7269  frlmsslss2  20028  resf1o  29339
  Copyright terms: Public domain W3C validator