MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnun Structured version   Visualization version   GIF version

Theorem fnun 6457
Description: The union of two functions with disjoint domains. (Contributed by NM, 22-Sep-2004.)
Assertion
Ref Expression
fnun (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵) = ∅) → (𝐹𝐺) Fn (𝐴𝐵))

Proof of Theorem fnun
StepHypRef Expression
1 df-fn 6352 . . 3 (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴))
2 df-fn 6352 . . 3 (𝐺 Fn 𝐵 ↔ (Fun 𝐺 ∧ dom 𝐺 = 𝐵))
3 ineq12 4183 . . . . . . . . . . 11 ((dom 𝐹 = 𝐴 ∧ dom 𝐺 = 𝐵) → (dom 𝐹 ∩ dom 𝐺) = (𝐴𝐵))
43eqeq1d 2823 . . . . . . . . . 10 ((dom 𝐹 = 𝐴 ∧ dom 𝐺 = 𝐵) → ((dom 𝐹 ∩ dom 𝐺) = ∅ ↔ (𝐴𝐵) = ∅))
54anbi2d 630 . . . . . . . . 9 ((dom 𝐹 = 𝐴 ∧ dom 𝐺 = 𝐵) → (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) ↔ ((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐴𝐵) = ∅)))
6 funun 6394 . . . . . . . . 9 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → Fun (𝐹𝐺))
75, 6syl6bir 256 . . . . . . . 8 ((dom 𝐹 = 𝐴 ∧ dom 𝐺 = 𝐵) → (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐴𝐵) = ∅) → Fun (𝐹𝐺)))
8 dmun 5773 . . . . . . . . 9 dom (𝐹𝐺) = (dom 𝐹 ∪ dom 𝐺)
9 uneq12 4133 . . . . . . . . 9 ((dom 𝐹 = 𝐴 ∧ dom 𝐺 = 𝐵) → (dom 𝐹 ∪ dom 𝐺) = (𝐴𝐵))
108, 9syl5eq 2868 . . . . . . . 8 ((dom 𝐹 = 𝐴 ∧ dom 𝐺 = 𝐵) → dom (𝐹𝐺) = (𝐴𝐵))
117, 10jctird 529 . . . . . . 7 ((dom 𝐹 = 𝐴 ∧ dom 𝐺 = 𝐵) → (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐴𝐵) = ∅) → (Fun (𝐹𝐺) ∧ dom (𝐹𝐺) = (𝐴𝐵))))
12 df-fn 6352 . . . . . . 7 ((𝐹𝐺) Fn (𝐴𝐵) ↔ (Fun (𝐹𝐺) ∧ dom (𝐹𝐺) = (𝐴𝐵)))
1311, 12syl6ibr 254 . . . . . 6 ((dom 𝐹 = 𝐴 ∧ dom 𝐺 = 𝐵) → (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐴𝐵) = ∅) → (𝐹𝐺) Fn (𝐴𝐵)))
1413expd 418 . . . . 5 ((dom 𝐹 = 𝐴 ∧ dom 𝐺 = 𝐵) → ((Fun 𝐹 ∧ Fun 𝐺) → ((𝐴𝐵) = ∅ → (𝐹𝐺) Fn (𝐴𝐵))))
1514impcom 410 . . . 4 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 = 𝐴 ∧ dom 𝐺 = 𝐵)) → ((𝐴𝐵) = ∅ → (𝐹𝐺) Fn (𝐴𝐵)))
1615an4s 658 . . 3 (((Fun 𝐹 ∧ dom 𝐹 = 𝐴) ∧ (Fun 𝐺 ∧ dom 𝐺 = 𝐵)) → ((𝐴𝐵) = ∅ → (𝐹𝐺) Fn (𝐴𝐵)))
171, 2, 16syl2anb 599 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → ((𝐴𝐵) = ∅ → (𝐹𝐺) Fn (𝐴𝐵)))
1817imp 409 1 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵) = ∅) → (𝐹𝐺) Fn (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  cun 3933  cin 3934  c0 4290  dom cdm 5549  Fun wfun 6343   Fn wfn 6344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pr 5321
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rab 3147  df-v 3496  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567  df-br 5059  df-opab 5121  df-id 5454  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-fun 6351  df-fn 6352
This theorem is referenced by:  fnunsn  6458  fun  6534  foun  6627  f1oun  6628  undifixp  8492  brwdom2  9031  sseqfn  31643  bnj927  32035  bnj535  32157  frrlem11  33128  fullfunfnv  33402  finixpnum  34871  poimirlem1  34887  poimirlem2  34888  poimirlem3  34889  poimirlem4  34890  poimirlem6  34892  poimirlem7  34893  poimirlem11  34897  poimirlem12  34898  poimirlem16  34902  poimirlem17  34903  poimirlem19  34905  poimirlem20  34906
  Copyright terms: Public domain W3C validator