MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  foconst Structured version   Visualization version   GIF version

Theorem foconst 6606
Description: A nonzero constant function is onto. (Contributed by NM, 12-Jan-2007.)
Assertion
Ref Expression
foconst ((𝐹:𝐴⟶{𝐵} ∧ 𝐹 ≠ ∅) → 𝐹:𝐴onto→{𝐵})

Proof of Theorem foconst
StepHypRef Expression
1 frel 6522 . . . . 5 (𝐹:𝐴⟶{𝐵} → Rel 𝐹)
2 relrn0 5843 . . . . . 6 (Rel 𝐹 → (𝐹 = ∅ ↔ ran 𝐹 = ∅))
32necon3abid 3055 . . . . 5 (Rel 𝐹 → (𝐹 ≠ ∅ ↔ ¬ ran 𝐹 = ∅))
41, 3syl 17 . . . 4 (𝐹:𝐴⟶{𝐵} → (𝐹 ≠ ∅ ↔ ¬ ran 𝐹 = ∅))
5 frn 6523 . . . . . 6 (𝐹:𝐴⟶{𝐵} → ran 𝐹 ⊆ {𝐵})
6 sssn 4762 . . . . . 6 (ran 𝐹 ⊆ {𝐵} ↔ (ran 𝐹 = ∅ ∨ ran 𝐹 = {𝐵}))
75, 6sylib 220 . . . . 5 (𝐹:𝐴⟶{𝐵} → (ran 𝐹 = ∅ ∨ ran 𝐹 = {𝐵}))
87ord 860 . . . 4 (𝐹:𝐴⟶{𝐵} → (¬ ran 𝐹 = ∅ → ran 𝐹 = {𝐵}))
94, 8sylbid 242 . . 3 (𝐹:𝐴⟶{𝐵} → (𝐹 ≠ ∅ → ran 𝐹 = {𝐵}))
109imdistani 571 . 2 ((𝐹:𝐴⟶{𝐵} ∧ 𝐹 ≠ ∅) → (𝐹:𝐴⟶{𝐵} ∧ ran 𝐹 = {𝐵}))
11 dffo2 6597 . 2 (𝐹:𝐴onto→{𝐵} ↔ (𝐹:𝐴⟶{𝐵} ∧ ran 𝐹 = {𝐵}))
1210, 11sylibr 236 1 ((𝐹:𝐴⟶{𝐵} ∧ 𝐹 ≠ ∅) → 𝐹:𝐴onto→{𝐵})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1536  wne 3019  wss 3939  c0 4294  {csn 4570  ran crn 5559  Rel wrel 5563  wf 6354  ontowfo 6356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pr 5333
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-rab 3150  df-v 3499  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-sn 4571  df-pr 4573  df-op 4577  df-br 5070  df-opab 5132  df-xp 5564  df-rel 5565  df-cnv 5566  df-dm 5568  df-rn 5569  df-fun 6360  df-fn 6361  df-f 6362  df-fo 6364
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator