MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fodomfib Structured version   Visualization version   GIF version

Theorem fodomfib 8800
Description: Equivalence of an onto mapping and dominance for a nonempty finite set. Unlike fodomb 9950 for arbitrary sets, this theorem does not require the Axiom of Choice for its proof. (Contributed by NM, 23-Mar-2006.)
Assertion
Ref Expression
fodomfib (𝐴 ∈ Fin → ((𝐴 ≠ ∅ ∧ ∃𝑓 𝑓:𝐴onto𝐵) ↔ (∅ ≺ 𝐵𝐵𝐴)))
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓

Proof of Theorem fodomfib
StepHypRef Expression
1 fof 6592 . . . . . . . . . . . . 13 (𝑓:𝐴onto𝐵𝑓:𝐴𝐵)
21fdmd 6525 . . . . . . . . . . . 12 (𝑓:𝐴onto𝐵 → dom 𝑓 = 𝐴)
32eqeq1d 2825 . . . . . . . . . . 11 (𝑓:𝐴onto𝐵 → (dom 𝑓 = ∅ ↔ 𝐴 = ∅))
4 dm0rn0 5797 . . . . . . . . . . . 12 (dom 𝑓 = ∅ ↔ ran 𝑓 = ∅)
5 forn 6595 . . . . . . . . . . . . 13 (𝑓:𝐴onto𝐵 → ran 𝑓 = 𝐵)
65eqeq1d 2825 . . . . . . . . . . . 12 (𝑓:𝐴onto𝐵 → (ran 𝑓 = ∅ ↔ 𝐵 = ∅))
74, 6syl5bb 285 . . . . . . . . . . 11 (𝑓:𝐴onto𝐵 → (dom 𝑓 = ∅ ↔ 𝐵 = ∅))
83, 7bitr3d 283 . . . . . . . . . 10 (𝑓:𝐴onto𝐵 → (𝐴 = ∅ ↔ 𝐵 = ∅))
98necon3bid 3062 . . . . . . . . 9 (𝑓:𝐴onto𝐵 → (𝐴 ≠ ∅ ↔ 𝐵 ≠ ∅))
109biimpac 481 . . . . . . . 8 ((𝐴 ≠ ∅ ∧ 𝑓:𝐴onto𝐵) → 𝐵 ≠ ∅)
1110adantll 712 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ 𝑓:𝐴onto𝐵) → 𝐵 ≠ ∅)
12 vex 3499 . . . . . . . . . . . 12 𝑓 ∈ V
1312rnex 7619 . . . . . . . . . . 11 ran 𝑓 ∈ V
145, 13eqeltrrdi 2924 . . . . . . . . . 10 (𝑓:𝐴onto𝐵𝐵 ∈ V)
1514adantl 484 . . . . . . . . 9 ((𝐴 ∈ Fin ∧ 𝑓:𝐴onto𝐵) → 𝐵 ∈ V)
16 0sdomg 8648 . . . . . . . . 9 (𝐵 ∈ V → (∅ ≺ 𝐵𝐵 ≠ ∅))
1715, 16syl 17 . . . . . . . 8 ((𝐴 ∈ Fin ∧ 𝑓:𝐴onto𝐵) → (∅ ≺ 𝐵𝐵 ≠ ∅))
1817adantlr 713 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ 𝑓:𝐴onto𝐵) → (∅ ≺ 𝐵𝐵 ≠ ∅))
1911, 18mpbird 259 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ 𝑓:𝐴onto𝐵) → ∅ ≺ 𝐵)
2019ex 415 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (𝑓:𝐴onto𝐵 → ∅ ≺ 𝐵))
21 fodomfi 8799 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝑓:𝐴onto𝐵) → 𝐵𝐴)
2221ex 415 . . . . . 6 (𝐴 ∈ Fin → (𝑓:𝐴onto𝐵𝐵𝐴))
2322adantr 483 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (𝑓:𝐴onto𝐵𝐵𝐴))
2420, 23jcad 515 . . . 4 ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (𝑓:𝐴onto𝐵 → (∅ ≺ 𝐵𝐵𝐴)))
2524exlimdv 1934 . . 3 ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (∃𝑓 𝑓:𝐴onto𝐵 → (∅ ≺ 𝐵𝐵𝐴)))
2625expimpd 456 . 2 (𝐴 ∈ Fin → ((𝐴 ≠ ∅ ∧ ∃𝑓 𝑓:𝐴onto𝐵) → (∅ ≺ 𝐵𝐵𝐴)))
27 sdomdomtr 8652 . . . 4 ((∅ ≺ 𝐵𝐵𝐴) → ∅ ≺ 𝐴)
28 0sdomg 8648 . . . 4 (𝐴 ∈ Fin → (∅ ≺ 𝐴𝐴 ≠ ∅))
2927, 28syl5ib 246 . . 3 (𝐴 ∈ Fin → ((∅ ≺ 𝐵𝐵𝐴) → 𝐴 ≠ ∅))
30 fodomr 8670 . . 3 ((∅ ≺ 𝐵𝐵𝐴) → ∃𝑓 𝑓:𝐴onto𝐵)
3129, 30jca2 516 . 2 (𝐴 ∈ Fin → ((∅ ≺ 𝐵𝐵𝐴) → (𝐴 ≠ ∅ ∧ ∃𝑓 𝑓:𝐴onto𝐵)))
3226, 31impbid 214 1 (𝐴 ∈ Fin → ((𝐴 ≠ ∅ ∧ ∃𝑓 𝑓:𝐴onto𝐵) ↔ (∅ ≺ 𝐵𝐵𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wex 1780  wcel 2114  wne 3018  Vcvv 3496  c0 4293   class class class wbr 5068  dom cdm 5557  ran crn 5558  ontowfo 6355  cdom 8509  csdm 8510  Fincfn 8511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-om 7583  df-1o 8104  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator