MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  foeq2 Structured version   Visualization version   GIF version

Theorem foeq2 6150
Description: Equality theorem for onto functions. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
foeq2 (𝐴 = 𝐵 → (𝐹:𝐴onto𝐶𝐹:𝐵onto𝐶))

Proof of Theorem foeq2
StepHypRef Expression
1 fneq2 6018 . . 3 (𝐴 = 𝐵 → (𝐹 Fn 𝐴𝐹 Fn 𝐵))
21anbi1d 741 . 2 (𝐴 = 𝐵 → ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐶) ↔ (𝐹 Fn 𝐵 ∧ ran 𝐹 = 𝐶)))
3 df-fo 5932 . 2 (𝐹:𝐴onto𝐶 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐶))
4 df-fo 5932 . 2 (𝐹:𝐵onto𝐶 ↔ (𝐹 Fn 𝐵 ∧ ran 𝐹 = 𝐶))
52, 3, 43bitr4g 303 1 (𝐴 = 𝐵 → (𝐹:𝐴onto𝐶𝐹:𝐵onto𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  ran crn 5144   Fn wfn 5921  ontowfo 5924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-ext 2631
This theorem depends on definitions:  df-bi 197  df-an 385  df-ex 1745  df-cleq 2644  df-fn 5929  df-fo 5932
This theorem is referenced by:  f1oeq2  6166  foeq123d  6170  tposfo  7424  brwdom  8513  brwdom2  8519  canthwdom  8525  cfslb2n  9128  fodomg  9383  0ramcl  15774  ghmcyg  18343  txcmpb  21495  qtoptopon  21555  opidon2OLD  33783
  Copyright terms: Public domain W3C validator