Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fompt Structured version   Visualization version   GIF version

Theorem fompt 39896
 Description: Express being onto for a mapping operation. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypothesis
Ref Expression
fompt.1 𝐹 = (𝑥𝐴𝐶)
Assertion
Ref Expression
fompt (𝐹:𝐴onto𝐵 ↔ (∀𝑥𝐴 𝐶𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑦 = 𝐶))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑦,𝐶   𝑦,𝐹
Allowed substitution hints:   𝐶(𝑥)   𝐹(𝑥)

Proof of Theorem fompt
StepHypRef Expression
1 fompt.1 . . . . . . 7 𝐹 = (𝑥𝐴𝐶)
2 nfmpt1 4899 . . . . . . 7 𝑥(𝑥𝐴𝐶)
31, 2nfcxfr 2900 . . . . . 6 𝑥𝐹
43dffo3f 39881 . . . . 5 (𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑦 = (𝐹𝑥)))
54simplbi 478 . . . 4 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
61fmpt 6545 . . . . . 6 (∀𝑥𝐴 𝐶𝐵𝐹:𝐴𝐵)
76bicomi 214 . . . . 5 (𝐹:𝐴𝐵 ↔ ∀𝑥𝐴 𝐶𝐵)
87biimpi 206 . . . 4 (𝐹:𝐴𝐵 → ∀𝑥𝐴 𝐶𝐵)
95, 8syl 17 . . 3 (𝐹:𝐴onto𝐵 → ∀𝑥𝐴 𝐶𝐵)
103foelrnf 39890 . . . . 5 ((𝐹:𝐴onto𝐵𝑦𝐵) → ∃𝑥𝐴 𝑦 = (𝐹𝑥))
11 nfcv 2902 . . . . . . . 8 𝑥𝐴
12 nfcv 2902 . . . . . . . 8 𝑥𝐵
133, 11, 12nffo 6276 . . . . . . 7 𝑥 𝐹:𝐴onto𝐵
14 simpr 479 . . . . . . . . . 10 (((𝐹:𝐴onto𝐵𝑥𝐴) ∧ 𝑦 = (𝐹𝑥)) → 𝑦 = (𝐹𝑥))
15 simpr 479 . . . . . . . . . . . 12 ((𝐹:𝐴onto𝐵𝑥𝐴) → 𝑥𝐴)
169r19.21bi 3070 . . . . . . . . . . . 12 ((𝐹:𝐴onto𝐵𝑥𝐴) → 𝐶𝐵)
171fvmpt2 6454 . . . . . . . . . . . 12 ((𝑥𝐴𝐶𝐵) → (𝐹𝑥) = 𝐶)
1815, 16, 17syl2anc 696 . . . . . . . . . . 11 ((𝐹:𝐴onto𝐵𝑥𝐴) → (𝐹𝑥) = 𝐶)
1918adantr 472 . . . . . . . . . 10 (((𝐹:𝐴onto𝐵𝑥𝐴) ∧ 𝑦 = (𝐹𝑥)) → (𝐹𝑥) = 𝐶)
2014, 19eqtrd 2794 . . . . . . . . 9 (((𝐹:𝐴onto𝐵𝑥𝐴) ∧ 𝑦 = (𝐹𝑥)) → 𝑦 = 𝐶)
2120ex 449 . . . . . . . 8 ((𝐹:𝐴onto𝐵𝑥𝐴) → (𝑦 = (𝐹𝑥) → 𝑦 = 𝐶))
2221ex 449 . . . . . . 7 (𝐹:𝐴onto𝐵 → (𝑥𝐴 → (𝑦 = (𝐹𝑥) → 𝑦 = 𝐶)))
2313, 22reximdai 3150 . . . . . 6 (𝐹:𝐴onto𝐵 → (∃𝑥𝐴 𝑦 = (𝐹𝑥) → ∃𝑥𝐴 𝑦 = 𝐶))
2423adantr 472 . . . . 5 ((𝐹:𝐴onto𝐵𝑦𝐵) → (∃𝑥𝐴 𝑦 = (𝐹𝑥) → ∃𝑥𝐴 𝑦 = 𝐶))
2510, 24mpd 15 . . . 4 ((𝐹:𝐴onto𝐵𝑦𝐵) → ∃𝑥𝐴 𝑦 = 𝐶)
2625ralrimiva 3104 . . 3 (𝐹:𝐴onto𝐵 → ∀𝑦𝐵𝑥𝐴 𝑦 = 𝐶)
279, 26jca 555 . 2 (𝐹:𝐴onto𝐵 → (∀𝑥𝐴 𝐶𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑦 = 𝐶))
286biimpi 206 . . . . 5 (∀𝑥𝐴 𝐶𝐵𝐹:𝐴𝐵)
2928adantr 472 . . . 4 ((∀𝑥𝐴 𝐶𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑦 = 𝐶) → 𝐹:𝐴𝐵)
30 nfv 1992 . . . . . 6 𝑦𝑥𝐴 𝐶𝐵
31 nfra1 3079 . . . . . 6 𝑦𝑦𝐵𝑥𝐴 𝑦 = 𝐶
3230, 31nfan 1977 . . . . 5 𝑦(∀𝑥𝐴 𝐶𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑦 = 𝐶)
33 simpll 807 . . . . . . 7 (((∀𝑥𝐴 𝐶𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑦 = 𝐶) ∧ 𝑦𝐵) → ∀𝑥𝐴 𝐶𝐵)
34 rspa 3068 . . . . . . . 8 ((∀𝑦𝐵𝑥𝐴 𝑦 = 𝐶𝑦𝐵) → ∃𝑥𝐴 𝑦 = 𝐶)
3534adantll 752 . . . . . . 7 (((∀𝑥𝐴 𝐶𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑦 = 𝐶) ∧ 𝑦𝐵) → ∃𝑥𝐴 𝑦 = 𝐶)
36 nfra1 3079 . . . . . . . . 9 𝑥𝑥𝐴 𝐶𝐵
37 simp3 1133 . . . . . . . . . . 11 ((∀𝑥𝐴 𝐶𝐵𝑥𝐴𝑦 = 𝐶) → 𝑦 = 𝐶)
38 simpr 479 . . . . . . . . . . . . . 14 ((∀𝑥𝐴 𝐶𝐵𝑥𝐴) → 𝑥𝐴)
39 rspa 3068 . . . . . . . . . . . . . 14 ((∀𝑥𝐴 𝐶𝐵𝑥𝐴) → 𝐶𝐵)
4038, 39, 17syl2anc 696 . . . . . . . . . . . . 13 ((∀𝑥𝐴 𝐶𝐵𝑥𝐴) → (𝐹𝑥) = 𝐶)
4140eqcomd 2766 . . . . . . . . . . . 12 ((∀𝑥𝐴 𝐶𝐵𝑥𝐴) → 𝐶 = (𝐹𝑥))
42413adant3 1127 . . . . . . . . . . 11 ((∀𝑥𝐴 𝐶𝐵𝑥𝐴𝑦 = 𝐶) → 𝐶 = (𝐹𝑥))
4337, 42eqtrd 2794 . . . . . . . . . 10 ((∀𝑥𝐴 𝐶𝐵𝑥𝐴𝑦 = 𝐶) → 𝑦 = (𝐹𝑥))
44433exp 1113 . . . . . . . . 9 (∀𝑥𝐴 𝐶𝐵 → (𝑥𝐴 → (𝑦 = 𝐶𝑦 = (𝐹𝑥))))
4536, 44reximdai 3150 . . . . . . . 8 (∀𝑥𝐴 𝐶𝐵 → (∃𝑥𝐴 𝑦 = 𝐶 → ∃𝑥𝐴 𝑦 = (𝐹𝑥)))
4645imp 444 . . . . . . 7 ((∀𝑥𝐴 𝐶𝐵 ∧ ∃𝑥𝐴 𝑦 = 𝐶) → ∃𝑥𝐴 𝑦 = (𝐹𝑥))
4733, 35, 46syl2anc 696 . . . . . 6 (((∀𝑥𝐴 𝐶𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑦 = 𝐶) ∧ 𝑦𝐵) → ∃𝑥𝐴 𝑦 = (𝐹𝑥))
4847ex 449 . . . . 5 ((∀𝑥𝐴 𝐶𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑦 = 𝐶) → (𝑦𝐵 → ∃𝑥𝐴 𝑦 = (𝐹𝑥)))
4932, 48ralrimi 3095 . . . 4 ((∀𝑥𝐴 𝐶𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑦 = 𝐶) → ∀𝑦𝐵𝑥𝐴 𝑦 = (𝐹𝑥))
5029, 49jca 555 . . 3 ((∀𝑥𝐴 𝐶𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑦 = 𝐶) → (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑦 = (𝐹𝑥)))
5150, 4sylibr 224 . 2 ((∀𝑥𝐴 𝐶𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑦 = 𝐶) → 𝐹:𝐴onto𝐵)
5227, 51impbii 199 1 (𝐹:𝐴onto𝐵 ↔ (∀𝑥𝐴 𝐶𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑦 = 𝐶))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2139  ∀wral 3050  ∃wrex 3051   ↦ cmpt 4881  ⟶wf 6045  –onto→wfo 6047  ‘cfv 6049 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-fo 6055  df-fv 6057 This theorem is referenced by:  disjinfi  39897
 Copyright terms: Public domain W3C validator