Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem1 Structured version   Visualization version   GIF version

Theorem fourierdlem1 38906
Description: A partition interval is a subset of the partitioned interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem1.a (𝜑𝐴 ∈ ℝ*)
fourierdlem1.b (𝜑𝐵 ∈ ℝ*)
fourierdlem1.q (𝜑𝑄:(0...𝑀)⟶(𝐴[,]𝐵))
fourierdlem1.i (𝜑𝐼 ∈ (0..^𝑀))
fourierdlem1.x (𝜑𝑋 ∈ ((𝑄𝐼)[,](𝑄‘(𝐼 + 1))))
Assertion
Ref Expression
fourierdlem1 (𝜑𝑋 ∈ (𝐴[,]𝐵))

Proof of Theorem fourierdlem1
StepHypRef Expression
1 iccssxr 11993 . . 3 ((𝑄𝐼)[,](𝑄‘(𝐼 + 1))) ⊆ ℝ*
2 fourierdlem1.x . . 3 (𝜑𝑋 ∈ ((𝑄𝐼)[,](𝑄‘(𝐼 + 1))))
31, 2sseldi 3470 . 2 (𝜑𝑋 ∈ ℝ*)
4 fourierdlem1.a . . 3 (𝜑𝐴 ∈ ℝ*)
5 iccssxr 11993 . . . 4 (𝐴[,]𝐵) ⊆ ℝ*
6 fourierdlem1.q . . . . 5 (𝜑𝑄:(0...𝑀)⟶(𝐴[,]𝐵))
7 fourierdlem1.i . . . . . 6 (𝜑𝐼 ∈ (0..^𝑀))
8 elfzofz 12219 . . . . . 6 (𝐼 ∈ (0..^𝑀) → 𝐼 ∈ (0...𝑀))
97, 8syl 17 . . . . 5 (𝜑𝐼 ∈ (0...𝑀))
106, 9ffvelrnd 6151 . . . 4 (𝜑 → (𝑄𝐼) ∈ (𝐴[,]𝐵))
115, 10sseldi 3470 . . 3 (𝜑 → (𝑄𝐼) ∈ ℝ*)
12 fourierdlem1.b . . . 4 (𝜑𝐵 ∈ ℝ*)
13 iccgelb 11967 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑄𝐼) ∈ (𝐴[,]𝐵)) → 𝐴 ≤ (𝑄𝐼))
144, 12, 10, 13syl3anc 1317 . . 3 (𝜑𝐴 ≤ (𝑄𝐼))
15 fzofzp1 12296 . . . . . . . . 9 (𝐼 ∈ (0..^𝑀) → (𝐼 + 1) ∈ (0...𝑀))
167, 15syl 17 . . . . . . . 8 (𝜑 → (𝐼 + 1) ∈ (0...𝑀))
176, 16ffvelrnd 6151 . . . . . . 7 (𝜑 → (𝑄‘(𝐼 + 1)) ∈ (𝐴[,]𝐵))
185, 17sseldi 3470 . . . . . 6 (𝜑 → (𝑄‘(𝐼 + 1)) ∈ ℝ*)
19 elicc4 11977 . . . . . 6 (((𝑄𝐼) ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ*𝑋 ∈ ℝ*) → (𝑋 ∈ ((𝑄𝐼)[,](𝑄‘(𝐼 + 1))) ↔ ((𝑄𝐼) ≤ 𝑋𝑋 ≤ (𝑄‘(𝐼 + 1)))))
2011, 18, 3, 19syl3anc 1317 . . . . 5 (𝜑 → (𝑋 ∈ ((𝑄𝐼)[,](𝑄‘(𝐼 + 1))) ↔ ((𝑄𝐼) ≤ 𝑋𝑋 ≤ (𝑄‘(𝐼 + 1)))))
212, 20mpbid 220 . . . 4 (𝜑 → ((𝑄𝐼) ≤ 𝑋𝑋 ≤ (𝑄‘(𝐼 + 1))))
2221simpld 473 . . 3 (𝜑 → (𝑄𝐼) ≤ 𝑋)
234, 11, 3, 14, 22xrletrd 11734 . 2 (𝜑𝐴𝑋)
24 iccleub 11966 . . . 4 (((𝑄𝐼) ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ*𝑋 ∈ ((𝑄𝐼)[,](𝑄‘(𝐼 + 1)))) → 𝑋 ≤ (𝑄‘(𝐼 + 1)))
2511, 18, 2, 24syl3anc 1317 . . 3 (𝜑𝑋 ≤ (𝑄‘(𝐼 + 1)))
26 elicc4 11977 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ*) → ((𝑄‘(𝐼 + 1)) ∈ (𝐴[,]𝐵) ↔ (𝐴 ≤ (𝑄‘(𝐼 + 1)) ∧ (𝑄‘(𝐼 + 1)) ≤ 𝐵)))
274, 12, 18, 26syl3anc 1317 . . . . 5 (𝜑 → ((𝑄‘(𝐼 + 1)) ∈ (𝐴[,]𝐵) ↔ (𝐴 ≤ (𝑄‘(𝐼 + 1)) ∧ (𝑄‘(𝐼 + 1)) ≤ 𝐵)))
2817, 27mpbid 220 . . . 4 (𝜑 → (𝐴 ≤ (𝑄‘(𝐼 + 1)) ∧ (𝑄‘(𝐼 + 1)) ≤ 𝐵))
2928simprd 477 . . 3 (𝜑 → (𝑄‘(𝐼 + 1)) ≤ 𝐵)
303, 18, 12, 25, 29xrletrd 11734 . 2 (𝜑𝑋𝐵)
31 elicc1 11956 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ*𝐴𝑋𝑋𝐵)))
324, 12, 31syl2anc 690 . 2 (𝜑 → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ*𝐴𝑋𝑋𝐵)))
333, 23, 30, 32mpbir3and 1237 1 (𝜑𝑋 ∈ (𝐴[,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  w3a 1030  wcel 1938   class class class wbr 4481  wf 5685  cfv 5689  (class class class)co 6425  0cc0 9689  1c1 9690   + caddc 9692  *cxr 9826  cle 9828  [,]cicc 11915  ...cfz 12062  ..^cfzo 12199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-8 1940  ax-9 1947  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494  ax-sep 4607  ax-nul 4616  ax-pow 4668  ax-pr 4732  ax-un 6721  ax-cnex 9745  ax-resscn 9746  ax-1cn 9747  ax-icn 9748  ax-addcl 9749  ax-addrcl 9750  ax-mulcl 9751  ax-mulrcl 9752  ax-mulcom 9753  ax-addass 9754  ax-mulass 9755  ax-distr 9756  ax-i2m1 9757  ax-1ne0 9758  ax-1rid 9759  ax-rnegex 9760  ax-rrecex 9761  ax-cnre 9762  ax-pre-lttri 9763  ax-pre-lttrn 9764  ax-pre-ltadd 9765  ax-pre-mulgt0 9766
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1699  df-sb 1831  df-eu 2366  df-mo 2367  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-ne 2686  df-nel 2687  df-ral 2805  df-rex 2806  df-reu 2807  df-rab 2809  df-v 3079  df-sbc 3307  df-csb 3404  df-dif 3447  df-un 3449  df-in 3451  df-ss 3458  df-pss 3460  df-nul 3778  df-if 3940  df-pw 4013  df-sn 4029  df-pr 4031  df-tp 4033  df-op 4035  df-uni 4271  df-iun 4355  df-br 4482  df-opab 4542  df-mpt 4543  df-tr 4579  df-eprel 4843  df-id 4847  df-po 4853  df-so 4854  df-fr 4891  df-we 4893  df-xp 4938  df-rel 4939  df-cnv 4940  df-co 4941  df-dm 4942  df-rn 4943  df-res 4944  df-ima 4945  df-pred 5487  df-ord 5533  df-on 5534  df-lim 5535  df-suc 5536  df-iota 5653  df-fun 5691  df-fn 5692  df-f 5693  df-f1 5694  df-fo 5695  df-f1o 5696  df-fv 5697  df-riota 6387  df-ov 6428  df-oprab 6429  df-mpt2 6430  df-om 6832  df-1st 6932  df-2nd 6933  df-wrecs 7167  df-recs 7229  df-rdg 7267  df-er 7503  df-en 7716  df-dom 7717  df-sdom 7718  df-pnf 9829  df-mnf 9830  df-xr 9831  df-ltxr 9832  df-le 9833  df-sub 10017  df-neg 10018  df-nn 10774  df-n0 11046  df-z 11117  df-uz 11424  df-icc 11919  df-fz 12063  df-fzo 12200
This theorem is referenced by:  fourierdlem8  38913  fourierdlem73  38979  fourierdlem81  38987  fourierdlem92  38998  fourierdlem93  38999
  Copyright terms: Public domain W3C validator