Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem10 Structured version   Visualization version   GIF version

Theorem fourierdlem10 39641
Description: Condition on the bounds of a non empty subinterval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem10.1 (𝜑𝐴 ∈ ℝ)
fourierdlem10.2 (𝜑𝐵 ∈ ℝ)
fourierdlem10.3 (𝜑𝐶 ∈ ℝ)
fourierdlem10.4 (𝜑𝐷 ∈ ℝ)
fourierdlem10.5 (𝜑𝐶 < 𝐷)
fourierdlem10.6 (𝜑 → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵))
Assertion
Ref Expression
fourierdlem10 (𝜑 → (𝐴𝐶𝐷𝐵))

Proof of Theorem fourierdlem10
StepHypRef Expression
1 fourierdlem10.1 . . 3 (𝜑𝐴 ∈ ℝ)
2 fourierdlem10.3 . . 3 (𝜑𝐶 ∈ ℝ)
3 fourierdlem10.6 . . . . 5 (𝜑 → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵))
43adantr 481 . . . 4 ((𝜑𝐶 < 𝐴) → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵))
52rexrd 10033 . . . . . . 7 (𝜑𝐶 ∈ ℝ*)
65adantr 481 . . . . . 6 ((𝜑𝐶 < 𝐴) → 𝐶 ∈ ℝ*)
7 fourierdlem10.4 . . . . . . . 8 (𝜑𝐷 ∈ ℝ)
87rexrd 10033 . . . . . . 7 (𝜑𝐷 ∈ ℝ*)
98adantr 481 . . . . . 6 ((𝜑𝐶 < 𝐴) → 𝐷 ∈ ℝ*)
102, 1readdcld 10013 . . . . . . . . 9 (𝜑 → (𝐶 + 𝐴) ∈ ℝ)
1110rehalfcld 11223 . . . . . . . 8 (𝜑 → ((𝐶 + 𝐴) / 2) ∈ ℝ)
122, 7readdcld 10013 . . . . . . . . 9 (𝜑 → (𝐶 + 𝐷) ∈ ℝ)
1312rehalfcld 11223 . . . . . . . 8 (𝜑 → ((𝐶 + 𝐷) / 2) ∈ ℝ)
1411, 13ifcld 4103 . . . . . . 7 (𝜑 → if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∈ ℝ)
1514adantr 481 . . . . . 6 ((𝜑𝐶 < 𝐴) → if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∈ ℝ)
16 simplr 791 . . . . . . . . 9 (((𝜑𝐶 < 𝐴) ∧ 𝐴𝐷) → 𝐶 < 𝐴)
172ad2antrr 761 . . . . . . . . . 10 (((𝜑𝐶 < 𝐴) ∧ 𝐴𝐷) → 𝐶 ∈ ℝ)
181ad2antrr 761 . . . . . . . . . 10 (((𝜑𝐶 < 𝐴) ∧ 𝐴𝐷) → 𝐴 ∈ ℝ)
19 avglt1 11214 . . . . . . . . . 10 ((𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐶 < 𝐴𝐶 < ((𝐶 + 𝐴) / 2)))
2017, 18, 19syl2anc 692 . . . . . . . . 9 (((𝜑𝐶 < 𝐴) ∧ 𝐴𝐷) → (𝐶 < 𝐴𝐶 < ((𝐶 + 𝐴) / 2)))
2116, 20mpbid 222 . . . . . . . 8 (((𝜑𝐶 < 𝐴) ∧ 𝐴𝐷) → 𝐶 < ((𝐶 + 𝐴) / 2))
22 iftrue 4064 . . . . . . . . 9 (𝐴𝐷 → if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) = ((𝐶 + 𝐴) / 2))
2322adantl 482 . . . . . . . 8 (((𝜑𝐶 < 𝐴) ∧ 𝐴𝐷) → if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) = ((𝐶 + 𝐴) / 2))
2421, 23breqtrrd 4641 . . . . . . 7 (((𝜑𝐶 < 𝐴) ∧ 𝐴𝐷) → 𝐶 < if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)))
25 fourierdlem10.5 . . . . . . . . . . 11 (𝜑𝐶 < 𝐷)
2625adantr 481 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐶 < 𝐷)
272adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐶 ∈ ℝ)
287adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐷 ∈ ℝ)
29 avglt1 11214 . . . . . . . . . . 11 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝐶 < 𝐷𝐶 < ((𝐶 + 𝐷) / 2)))
3027, 28, 29syl2anc 692 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐴𝐷) → (𝐶 < 𝐷𝐶 < ((𝐶 + 𝐷) / 2)))
3126, 30mpbid 222 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐶 < ((𝐶 + 𝐷) / 2))
32 iffalse 4067 . . . . . . . . . . 11 𝐴𝐷 → if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) = ((𝐶 + 𝐷) / 2))
3332eqcomd 2627 . . . . . . . . . 10 𝐴𝐷 → ((𝐶 + 𝐷) / 2) = if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)))
3433adantl 482 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐴𝐷) → ((𝐶 + 𝐷) / 2) = if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)))
3531, 34breqtrd 4639 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐶 < if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)))
3635adantlr 750 . . . . . . 7 (((𝜑𝐶 < 𝐴) ∧ ¬ 𝐴𝐷) → 𝐶 < if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)))
3724, 36pm2.61dan 831 . . . . . 6 ((𝜑𝐶 < 𝐴) → 𝐶 < if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)))
3822adantl 482 . . . . . . . . . 10 ((𝜑𝐴𝐷) → if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) = ((𝐶 + 𝐴) / 2))
3910adantr 481 . . . . . . . . . . 11 ((𝜑𝐴𝐷) → (𝐶 + 𝐴) ∈ ℝ)
4012adantr 481 . . . . . . . . . . 11 ((𝜑𝐴𝐷) → (𝐶 + 𝐷) ∈ ℝ)
41 2rp 11781 . . . . . . . . . . . 12 2 ∈ ℝ+
4241a1i 11 . . . . . . . . . . 11 ((𝜑𝐴𝐷) → 2 ∈ ℝ+)
431adantr 481 . . . . . . . . . . . 12 ((𝜑𝐴𝐷) → 𝐴 ∈ ℝ)
447adantr 481 . . . . . . . . . . . 12 ((𝜑𝐴𝐷) → 𝐷 ∈ ℝ)
452adantr 481 . . . . . . . . . . . 12 ((𝜑𝐴𝐷) → 𝐶 ∈ ℝ)
46 simpr 477 . . . . . . . . . . . 12 ((𝜑𝐴𝐷) → 𝐴𝐷)
4743, 44, 45, 46leadd2dd 10586 . . . . . . . . . . 11 ((𝜑𝐴𝐷) → (𝐶 + 𝐴) ≤ (𝐶 + 𝐷))
4839, 40, 42, 47lediv1dd 11874 . . . . . . . . . 10 ((𝜑𝐴𝐷) → ((𝐶 + 𝐴) / 2) ≤ ((𝐶 + 𝐷) / 2))
4938, 48eqbrtrd 4635 . . . . . . . . 9 ((𝜑𝐴𝐷) → if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ≤ ((𝐶 + 𝐷) / 2))
5032adantl 482 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐴𝐷) → if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) = ((𝐶 + 𝐷) / 2))
5113leidd 10538 . . . . . . . . . . 11 (𝜑 → ((𝐶 + 𝐷) / 2) ≤ ((𝐶 + 𝐷) / 2))
5251adantr 481 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐴𝐷) → ((𝐶 + 𝐷) / 2) ≤ ((𝐶 + 𝐷) / 2))
5350, 52eqbrtrd 4635 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐴𝐷) → if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ≤ ((𝐶 + 𝐷) / 2))
5449, 53pm2.61dan 831 . . . . . . . 8 (𝜑 → if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ≤ ((𝐶 + 𝐷) / 2))
55 avglt2 11215 . . . . . . . . . 10 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝐶 < 𝐷 ↔ ((𝐶 + 𝐷) / 2) < 𝐷))
562, 7, 55syl2anc 692 . . . . . . . . 9 (𝜑 → (𝐶 < 𝐷 ↔ ((𝐶 + 𝐷) / 2) < 𝐷))
5725, 56mpbid 222 . . . . . . . 8 (𝜑 → ((𝐶 + 𝐷) / 2) < 𝐷)
5814, 13, 7, 54, 57lelttrd 10139 . . . . . . 7 (𝜑 → if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) < 𝐷)
5958adantr 481 . . . . . 6 ((𝜑𝐶 < 𝐴) → if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) < 𝐷)
606, 9, 15, 37, 59eliood 39131 . . . . 5 ((𝜑𝐶 < 𝐴) → if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∈ (𝐶(,)𝐷))
611adantr 481 . . . . . . . 8 ((𝜑𝐶 < 𝐴) → 𝐴 ∈ ℝ)
6211adantr 481 . . . . . . . . 9 ((𝜑𝐶 < 𝐴) → ((𝐶 + 𝐴) / 2) ∈ ℝ)
6314adantr 481 . . . . . . . . . . . 12 ((𝜑𝐴𝐷) → if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∈ ℝ)
6463, 38eqled 10084 . . . . . . . . . . 11 ((𝜑𝐴𝐷) → if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ≤ ((𝐶 + 𝐴) / 2))
6514adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐴𝐷) → if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∈ ℝ)
6611adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐴𝐷) → ((𝐶 + 𝐴) / 2) ∈ ℝ)
67 simpr 477 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ 𝐴𝐷) → ¬ 𝐴𝐷)
681adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐴 ∈ ℝ)
6928, 68ltnled 10128 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ 𝐴𝐷) → (𝐷 < 𝐴 ↔ ¬ 𝐴𝐷))
7067, 69mpbird 247 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐷 < 𝐴)
7112adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝐷 < 𝐴) → (𝐶 + 𝐷) ∈ ℝ)
7210adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝐷 < 𝐴) → (𝐶 + 𝐴) ∈ ℝ)
7341a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝐷 < 𝐴) → 2 ∈ ℝ+)
747adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝐷 < 𝐴) → 𝐷 ∈ ℝ)
751adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝐷 < 𝐴) → 𝐴 ∈ ℝ)
762adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝐷 < 𝐴) → 𝐶 ∈ ℝ)
77 simpr 477 . . . . . . . . . . . . . . . 16 ((𝜑𝐷 < 𝐴) → 𝐷 < 𝐴)
7874, 75, 76, 77ltadd2dd 10140 . . . . . . . . . . . . . . 15 ((𝜑𝐷 < 𝐴) → (𝐶 + 𝐷) < (𝐶 + 𝐴))
7971, 72, 73, 78ltdiv1dd 11873 . . . . . . . . . . . . . 14 ((𝜑𝐷 < 𝐴) → ((𝐶 + 𝐷) / 2) < ((𝐶 + 𝐴) / 2))
8070, 79syldan 487 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝐴𝐷) → ((𝐶 + 𝐷) / 2) < ((𝐶 + 𝐴) / 2))
8150, 80eqbrtrd 4635 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐴𝐷) → if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) < ((𝐶 + 𝐴) / 2))
8265, 66, 81ltled 10129 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐴𝐷) → if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ≤ ((𝐶 + 𝐴) / 2))
8364, 82pm2.61dan 831 . . . . . . . . . 10 (𝜑 → if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ≤ ((𝐶 + 𝐴) / 2))
8483adantr 481 . . . . . . . . 9 ((𝜑𝐶 < 𝐴) → if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ≤ ((𝐶 + 𝐴) / 2))
85 simpr 477 . . . . . . . . . 10 ((𝜑𝐶 < 𝐴) → 𝐶 < 𝐴)
862adantr 481 . . . . . . . . . . 11 ((𝜑𝐶 < 𝐴) → 𝐶 ∈ ℝ)
87 avglt2 11215 . . . . . . . . . . 11 ((𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐶 < 𝐴 ↔ ((𝐶 + 𝐴) / 2) < 𝐴))
8886, 61, 87syl2anc 692 . . . . . . . . . 10 ((𝜑𝐶 < 𝐴) → (𝐶 < 𝐴 ↔ ((𝐶 + 𝐴) / 2) < 𝐴))
8985, 88mpbid 222 . . . . . . . . 9 ((𝜑𝐶 < 𝐴) → ((𝐶 + 𝐴) / 2) < 𝐴)
9015, 62, 61, 84, 89lelttrd 10139 . . . . . . . 8 ((𝜑𝐶 < 𝐴) → if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) < 𝐴)
9115, 61, 90ltnsymd 10130 . . . . . . 7 ((𝜑𝐶 < 𝐴) → ¬ 𝐴 < if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)))
9291intn3an2d 1440 . . . . . 6 ((𝜑𝐶 < 𝐴) → ¬ (if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∈ ℝ ∧ 𝐴 < if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∧ if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) < 𝐵))
931rexrd 10033 . . . . . . . 8 (𝜑𝐴 ∈ ℝ*)
9493adantr 481 . . . . . . 7 ((𝜑𝐶 < 𝐴) → 𝐴 ∈ ℝ*)
95 fourierdlem10.2 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ)
9695rexrd 10033 . . . . . . . 8 (𝜑𝐵 ∈ ℝ*)
9796adantr 481 . . . . . . 7 ((𝜑𝐶 < 𝐴) → 𝐵 ∈ ℝ*)
98 elioo2 12158 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∈ (𝐴(,)𝐵) ↔ (if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∈ ℝ ∧ 𝐴 < if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∧ if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) < 𝐵)))
9994, 97, 98syl2anc 692 . . . . . 6 ((𝜑𝐶 < 𝐴) → (if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∈ (𝐴(,)𝐵) ↔ (if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∈ ℝ ∧ 𝐴 < if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∧ if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) < 𝐵)))
10092, 99mtbird 315 . . . . 5 ((𝜑𝐶 < 𝐴) → ¬ if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∈ (𝐴(,)𝐵))
101 nelss 3643 . . . . 5 ((if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∈ (𝐶(,)𝐷) ∧ ¬ if(𝐴𝐷, ((𝐶 + 𝐴) / 2), ((𝐶 + 𝐷) / 2)) ∈ (𝐴(,)𝐵)) → ¬ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵))
10260, 100, 101syl2anc 692 . . . 4 ((𝜑𝐶 < 𝐴) → ¬ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵))
1034, 102pm2.65da 599 . . 3 (𝜑 → ¬ 𝐶 < 𝐴)
1041, 2, 103nltled 10131 . 2 (𝜑𝐴𝐶)
1053adantr 481 . . . 4 ((𝜑𝐵 < 𝐷) → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵))
1065adantr 481 . . . . . 6 ((𝜑𝐵 < 𝐷) → 𝐶 ∈ ℝ*)
1078adantr 481 . . . . . 6 ((𝜑𝐵 < 𝐷) → 𝐷 ∈ ℝ*)
10895, 7readdcld 10013 . . . . . . . . 9 (𝜑 → (𝐵 + 𝐷) ∈ ℝ)
109108rehalfcld 11223 . . . . . . . 8 (𝜑 → ((𝐵 + 𝐷) / 2) ∈ ℝ)
110109, 13ifcld 4103 . . . . . . 7 (𝜑 → if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) ∈ ℝ)
111110adantr 481 . . . . . 6 ((𝜑𝐵 < 𝐷) → if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) ∈ ℝ)
1122adantr 481 . . . . . . . . 9 ((𝜑𝐶𝐵) → 𝐶 ∈ ℝ)
11313adantr 481 . . . . . . . . 9 ((𝜑𝐶𝐵) → ((𝐶 + 𝐷) / 2) ∈ ℝ)
114110adantr 481 . . . . . . . . 9 ((𝜑𝐶𝐵) → if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) ∈ ℝ)
1152, 7, 29syl2anc 692 . . . . . . . . . . 11 (𝜑 → (𝐶 < 𝐷𝐶 < ((𝐶 + 𝐷) / 2)))
11625, 115mpbid 222 . . . . . . . . . 10 (𝜑𝐶 < ((𝐶 + 𝐷) / 2))
117116adantr 481 . . . . . . . . 9 ((𝜑𝐶𝐵) → 𝐶 < ((𝐶 + 𝐷) / 2))
11812adantr 481 . . . . . . . . . . 11 ((𝜑𝐶𝐵) → (𝐶 + 𝐷) ∈ ℝ)
119108adantr 481 . . . . . . . . . . 11 ((𝜑𝐶𝐵) → (𝐵 + 𝐷) ∈ ℝ)
12041a1i 11 . . . . . . . . . . 11 ((𝜑𝐶𝐵) → 2 ∈ ℝ+)
12195adantr 481 . . . . . . . . . . . 12 ((𝜑𝐶𝐵) → 𝐵 ∈ ℝ)
1227adantr 481 . . . . . . . . . . . 12 ((𝜑𝐶𝐵) → 𝐷 ∈ ℝ)
123 simpr 477 . . . . . . . . . . . 12 ((𝜑𝐶𝐵) → 𝐶𝐵)
124112, 121, 122, 123leadd1dd 10585 . . . . . . . . . . 11 ((𝜑𝐶𝐵) → (𝐶 + 𝐷) ≤ (𝐵 + 𝐷))
125118, 119, 120, 124lediv1dd 11874 . . . . . . . . . 10 ((𝜑𝐶𝐵) → ((𝐶 + 𝐷) / 2) ≤ ((𝐵 + 𝐷) / 2))
126 iftrue 4064 . . . . . . . . . . 11 (𝐶𝐵 → if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) = ((𝐵 + 𝐷) / 2))
127126adantl 482 . . . . . . . . . 10 ((𝜑𝐶𝐵) → if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) = ((𝐵 + 𝐷) / 2))
128125, 127breqtrrd 4641 . . . . . . . . 9 ((𝜑𝐶𝐵) → ((𝐶 + 𝐷) / 2) ≤ if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)))
129112, 113, 114, 117, 128ltletrd 10141 . . . . . . . 8 ((𝜑𝐶𝐵) → 𝐶 < if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)))
130116adantr 481 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐶𝐵) → 𝐶 < ((𝐶 + 𝐷) / 2))
131 iffalse 4067 . . . . . . . . . . 11 𝐶𝐵 → if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) = ((𝐶 + 𝐷) / 2))
132131eqcomd 2627 . . . . . . . . . 10 𝐶𝐵 → ((𝐶 + 𝐷) / 2) = if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)))
133132adantl 482 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐶𝐵) → ((𝐶 + 𝐷) / 2) = if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)))
134130, 133breqtrd 4639 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐶𝐵) → 𝐶 < if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)))
135129, 134pm2.61dan 831 . . . . . . 7 (𝜑𝐶 < if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)))
136135adantr 481 . . . . . 6 ((𝜑𝐵 < 𝐷) → 𝐶 < if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)))
137126adantl 482 . . . . . . . 8 (((𝜑𝐵 < 𝐷) ∧ 𝐶𝐵) → if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) = ((𝐵 + 𝐷) / 2))
138 simpr 477 . . . . . . . . . 10 ((𝜑𝐵 < 𝐷) → 𝐵 < 𝐷)
13995adantr 481 . . . . . . . . . . 11 ((𝜑𝐵 < 𝐷) → 𝐵 ∈ ℝ)
1407adantr 481 . . . . . . . . . . 11 ((𝜑𝐵 < 𝐷) → 𝐷 ∈ ℝ)
141 avglt2 11215 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝐵 < 𝐷 ↔ ((𝐵 + 𝐷) / 2) < 𝐷))
142139, 140, 141syl2anc 692 . . . . . . . . . 10 ((𝜑𝐵 < 𝐷) → (𝐵 < 𝐷 ↔ ((𝐵 + 𝐷) / 2) < 𝐷))
143138, 142mpbid 222 . . . . . . . . 9 ((𝜑𝐵 < 𝐷) → ((𝐵 + 𝐷) / 2) < 𝐷)
144143adantr 481 . . . . . . . 8 (((𝜑𝐵 < 𝐷) ∧ 𝐶𝐵) → ((𝐵 + 𝐷) / 2) < 𝐷)
145137, 144eqbrtrd 4635 . . . . . . 7 (((𝜑𝐵 < 𝐷) ∧ 𝐶𝐵) → if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) < 𝐷)
146131adantl 482 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐶𝐵) → if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) = ((𝐶 + 𝐷) / 2))
14757adantr 481 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐶𝐵) → ((𝐶 + 𝐷) / 2) < 𝐷)
148146, 147eqbrtrd 4635 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐶𝐵) → if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) < 𝐷)
149148adantlr 750 . . . . . . 7 (((𝜑𝐵 < 𝐷) ∧ ¬ 𝐶𝐵) → if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) < 𝐷)
150145, 149pm2.61dan 831 . . . . . 6 ((𝜑𝐵 < 𝐷) → if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) < 𝐷)
151106, 107, 111, 136, 150eliood 39131 . . . . 5 ((𝜑𝐵 < 𝐷) → if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) ∈ (𝐶(,)𝐷))
152109adantr 481 . . . . . . . . . . . 12 ((𝜑𝐵 < 𝐷) → ((𝐵 + 𝐷) / 2) ∈ ℝ)
153 avglt1 11214 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝐵 < 𝐷𝐵 < ((𝐵 + 𝐷) / 2)))
154139, 140, 153syl2anc 692 . . . . . . . . . . . . 13 ((𝜑𝐵 < 𝐷) → (𝐵 < 𝐷𝐵 < ((𝐵 + 𝐷) / 2)))
155138, 154mpbid 222 . . . . . . . . . . . 12 ((𝜑𝐵 < 𝐷) → 𝐵 < ((𝐵 + 𝐷) / 2))
156139, 152, 155ltled 10129 . . . . . . . . . . 11 ((𝜑𝐵 < 𝐷) → 𝐵 ≤ ((𝐵 + 𝐷) / 2))
157156adantr 481 . . . . . . . . . 10 (((𝜑𝐵 < 𝐷) ∧ 𝐶𝐵) → 𝐵 ≤ ((𝐵 + 𝐷) / 2))
158157, 137breqtrrd 4641 . . . . . . . . 9 (((𝜑𝐵 < 𝐷) ∧ 𝐶𝐵) → 𝐵 ≤ if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)))
15995adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐶𝐵) → 𝐵 ∈ ℝ)
16013adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐶𝐵) → ((𝐶 + 𝐷) / 2) ∈ ℝ)
1612adantr 481 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝐶𝐵) → 𝐶 ∈ ℝ)
162 simpr 477 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ 𝐶𝐵) → ¬ 𝐶𝐵)
163159, 161ltnled 10128 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ 𝐶𝐵) → (𝐵 < 𝐶 ↔ ¬ 𝐶𝐵))
164162, 163mpbird 247 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝐶𝐵) → 𝐵 < 𝐶)
165159, 161, 160, 164, 130lttrd 10142 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐶𝐵) → 𝐵 < ((𝐶 + 𝐷) / 2))
166159, 160, 165ltled 10129 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐶𝐵) → 𝐵 ≤ ((𝐶 + 𝐷) / 2))
167166, 133breqtrd 4639 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐶𝐵) → 𝐵 ≤ if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)))
168167adantlr 750 . . . . . . . . 9 (((𝜑𝐵 < 𝐷) ∧ ¬ 𝐶𝐵) → 𝐵 ≤ if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)))
169158, 168pm2.61dan 831 . . . . . . . 8 ((𝜑𝐵 < 𝐷) → 𝐵 ≤ if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)))
170139, 111, 169lensymd 10132 . . . . . . 7 ((𝜑𝐵 < 𝐷) → ¬ if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) < 𝐵)
171170intn3an3d 1441 . . . . . 6 ((𝜑𝐵 < 𝐷) → ¬ (if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) ∈ ℝ ∧ 𝐴 < if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) ∧ if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) < 𝐵))
17293adantr 481 . . . . . . 7 ((𝜑𝐵 < 𝐷) → 𝐴 ∈ ℝ*)
17396adantr 481 . . . . . . 7 ((𝜑𝐵 < 𝐷) → 𝐵 ∈ ℝ*)
174 elioo2 12158 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) ∈ (𝐴(,)𝐵) ↔ (if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) ∈ ℝ ∧ 𝐴 < if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) ∧ if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) < 𝐵)))
175172, 173, 174syl2anc 692 . . . . . 6 ((𝜑𝐵 < 𝐷) → (if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) ∈ (𝐴(,)𝐵) ↔ (if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) ∈ ℝ ∧ 𝐴 < if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) ∧ if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) < 𝐵)))
176171, 175mtbird 315 . . . . 5 ((𝜑𝐵 < 𝐷) → ¬ if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) ∈ (𝐴(,)𝐵))
177 nelss 3643 . . . . 5 ((if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) ∈ (𝐶(,)𝐷) ∧ ¬ if(𝐶𝐵, ((𝐵 + 𝐷) / 2), ((𝐶 + 𝐷) / 2)) ∈ (𝐴(,)𝐵)) → ¬ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵))
178151, 176, 177syl2anc 692 . . . 4 ((𝜑𝐵 < 𝐷) → ¬ (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵))
179105, 178pm2.65da 599 . . 3 (𝜑 → ¬ 𝐵 < 𝐷)
1807, 95, 179nltled 10131 . 2 (𝜑𝐷𝐵)
181104, 180jca 554 1 (𝜑 → (𝐴𝐶𝐷𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wss 3555  ifcif 4058   class class class wbr 4613  (class class class)co 6604  cr 9879   + caddc 9883  *cxr 10017   < clt 10018  cle 10019   / cdiv 10628  2c2 11014  +crp 11776  (,)cioo 12117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-po 4995  df-so 4996  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-1st 7113  df-2nd 7114  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-2 11023  df-rp 11777  df-ioo 12121
This theorem is referenced by:  fourierdlem32  39663  fourierdlem33  39664  fourierdlem46  39676  fourierdlem50  39680  fourierdlem72  39702  fourierdlem76  39706  fourierdlem89  39719  fourierdlem91  39721  fourierdlem103  39733  fourierdlem104  39734
  Copyright terms: Public domain W3C validator