Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem109 Structured version   Visualization version   GIF version

Theorem fourierdlem109 39726
Description: The integral of a piecewise continuous periodic function 𝐹 is unchanged if the domain is shifted by any value 𝑋. This lemma generalizes fourierdlem92 39709 where the integral was shifted by the exact period. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem109.a (𝜑𝐴 ∈ ℝ)
fourierdlem109.b (𝜑𝐵 ∈ ℝ)
fourierdlem109.t 𝑇 = (𝐵𝐴)
fourierdlem109.x (𝜑𝑋 ∈ ℝ)
fourierdlem109.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem109.m (𝜑𝑀 ∈ ℕ)
fourierdlem109.q (𝜑𝑄 ∈ (𝑃𝑀))
fourierdlem109.f (𝜑𝐹:ℝ⟶ℂ)
fourierdlem109.fper ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
fourierdlem109.fcn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
fourierdlem109.r ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
fourierdlem109.l ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
fourierdlem109.o 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = (𝐵𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem109.h 𝐻 = ({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑥 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄})
fourierdlem109.n 𝑁 = ((#‘𝐻) − 1)
fourierdlem109.16 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻))
fourierdlem109.17 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
fourierdlem109.18 𝐽 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))
fourierdlem109.19 𝐼 = (𝑥 ∈ ℝ ↦ sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) ≤ (𝐽‘(𝐸𝑥))}, ℝ, < ))
Assertion
Ref Expression
fourierdlem109 (𝜑 → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
Distinct variable groups:   𝐴,𝑓,𝑗,𝑘,𝑦   𝐴,𝑖,𝑥,𝑗,𝑘,𝑦   𝐴,𝑚,𝑝,𝑖,𝑗   𝐵,𝑓,𝑗,𝑘,𝑦   𝐵,𝑖,𝑥   𝐵,𝑚,𝑝   𝑓,𝐸,𝑗,𝑘,𝑦   𝑖,𝐸,𝑥   𝑖,𝐹,𝑗,𝑥,𝑦   𝑓,𝐻,𝑦   𝑥,𝐻   𝑓,𝐼,𝑘,𝑦   𝑖,𝐼,𝑥   𝑖,𝐽,𝑗,𝑥,𝑦   𝑥,𝐿,𝑦   𝑖,𝑀,𝑥,𝑦,𝑗   𝑚,𝑀,𝑝   𝑓,𝑁,𝑗,𝑘,𝑦   𝑖,𝑁,𝑥   𝑚,𝑁,𝑝   𝑄,𝑓,𝑗,𝑘,𝑦   𝑄,𝑖,𝑥   𝑄,𝑚,𝑝   𝑥,𝑅,𝑦   𝑆,𝑓,𝑗,𝑘,𝑦   𝑆,𝑖,𝑥   𝑆,𝑚,𝑝   𝑇,𝑓,𝑗,𝑘,𝑦   𝑇,𝑖,𝑥   𝑇,𝑚,𝑝   𝑓,𝑋,𝑗,𝑦   𝑖,𝑋,𝑚,𝑝   𝑥,𝑋   𝜑,𝑓,𝑗,𝑘,𝑦   𝜑,𝑖,𝑥
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝑃(𝑥,𝑦,𝑓,𝑖,𝑗,𝑘,𝑚,𝑝)   𝑅(𝑓,𝑖,𝑗,𝑘,𝑚,𝑝)   𝐸(𝑚,𝑝)   𝐹(𝑓,𝑘,𝑚,𝑝)   𝐻(𝑖,𝑗,𝑘,𝑚,𝑝)   𝐼(𝑗,𝑚,𝑝)   𝐽(𝑓,𝑘,𝑚,𝑝)   𝐿(𝑓,𝑖,𝑗,𝑘,𝑚,𝑝)   𝑀(𝑓,𝑘)   𝑂(𝑥,𝑦,𝑓,𝑖,𝑗,𝑘,𝑚,𝑝)   𝑋(𝑘)

Proof of Theorem fourierdlem109
StepHypRef Expression
1 fourierdlem109.a . . . 4 (𝜑𝐴 ∈ ℝ)
21adantr 481 . . 3 ((𝜑 ∧ 0 < 𝑋) → 𝐴 ∈ ℝ)
3 fourierdlem109.b . . . 4 (𝜑𝐵 ∈ ℝ)
43adantr 481 . . 3 ((𝜑 ∧ 0 < 𝑋) → 𝐵 ∈ ℝ)
5 fourierdlem109.t . . 3 𝑇 = (𝐵𝐴)
6 fourierdlem109.x . . . . 5 (𝜑𝑋 ∈ ℝ)
76adantr 481 . . . 4 ((𝜑 ∧ 0 < 𝑋) → 𝑋 ∈ ℝ)
8 simpr 477 . . . 4 ((𝜑 ∧ 0 < 𝑋) → 0 < 𝑋)
97, 8elrpd 11813 . . 3 ((𝜑 ∧ 0 < 𝑋) → 𝑋 ∈ ℝ+)
10 fourierdlem109.p . . 3 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
11 fourierdlem109.m . . . 4 (𝜑𝑀 ∈ ℕ)
1211adantr 481 . . 3 ((𝜑 ∧ 0 < 𝑋) → 𝑀 ∈ ℕ)
13 fourierdlem109.q . . . 4 (𝜑𝑄 ∈ (𝑃𝑀))
1413adantr 481 . . 3 ((𝜑 ∧ 0 < 𝑋) → 𝑄 ∈ (𝑃𝑀))
15 fourierdlem109.f . . . 4 (𝜑𝐹:ℝ⟶ℂ)
1615adantr 481 . . 3 ((𝜑 ∧ 0 < 𝑋) → 𝐹:ℝ⟶ℂ)
17 fourierdlem109.fper . . . 4 ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
1817adantlr 750 . . 3 (((𝜑 ∧ 0 < 𝑋) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
19 fourierdlem109.fcn . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
2019adantlr 750 . . 3 (((𝜑 ∧ 0 < 𝑋) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
21 fourierdlem109.r . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
2221adantlr 750 . . 3 (((𝜑 ∧ 0 < 𝑋) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
23 fourierdlem109.l . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
2423adantlr 750 . . 3 (((𝜑 ∧ 0 < 𝑋) ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
252, 4, 5, 9, 10, 12, 14, 16, 18, 20, 22, 24fourierdlem108 39725 . 2 ((𝜑 ∧ 0 < 𝑋) → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
26 oveq2 6613 . . . . . . 7 (𝑋 = 0 → (𝐴𝑋) = (𝐴 − 0))
271recnd 10013 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
2827subid1d 10326 . . . . . . 7 (𝜑 → (𝐴 − 0) = 𝐴)
2926, 28sylan9eqr 2682 . . . . . 6 ((𝜑𝑋 = 0) → (𝐴𝑋) = 𝐴)
30 oveq2 6613 . . . . . . 7 (𝑋 = 0 → (𝐵𝑋) = (𝐵 − 0))
313recnd 10013 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
3231subid1d 10326 . . . . . . 7 (𝜑 → (𝐵 − 0) = 𝐵)
3330, 32sylan9eqr 2682 . . . . . 6 ((𝜑𝑋 = 0) → (𝐵𝑋) = 𝐵)
3429, 33oveq12d 6623 . . . . 5 ((𝜑𝑋 = 0) → ((𝐴𝑋)[,](𝐵𝑋)) = (𝐴[,]𝐵))
3534itgeq1d 39466 . . . 4 ((𝜑𝑋 = 0) → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
3635adantlr 750 . . 3 (((𝜑 ∧ ¬ 0 < 𝑋) ∧ 𝑋 = 0) → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
37 simpll 789 . . . 4 (((𝜑 ∧ ¬ 0 < 𝑋) ∧ ¬ 𝑋 = 0) → 𝜑)
3837, 6syl 17 . . . . 5 (((𝜑 ∧ ¬ 0 < 𝑋) ∧ ¬ 𝑋 = 0) → 𝑋 ∈ ℝ)
39 0red 9986 . . . . 5 (((𝜑 ∧ ¬ 0 < 𝑋) ∧ ¬ 𝑋 = 0) → 0 ∈ ℝ)
40 simpr 477 . . . . . 6 (((𝜑 ∧ ¬ 0 < 𝑋) ∧ ¬ 𝑋 = 0) → ¬ 𝑋 = 0)
4140neqned 2803 . . . . 5 (((𝜑 ∧ ¬ 0 < 𝑋) ∧ ¬ 𝑋 = 0) → 𝑋 ≠ 0)
42 simplr 791 . . . . 5 (((𝜑 ∧ ¬ 0 < 𝑋) ∧ ¬ 𝑋 = 0) → ¬ 0 < 𝑋)
4338, 39, 41, 42lttri5d 38964 . . . 4 (((𝜑 ∧ ¬ 0 < 𝑋) ∧ ¬ 𝑋 = 0) → 𝑋 < 0)
446recnd 10013 . . . . . . . . . . . 12 (𝜑𝑋 ∈ ℂ)
4527, 44subcld 10337 . . . . . . . . . . 11 (𝜑 → (𝐴𝑋) ∈ ℂ)
4645, 44subnegd 10344 . . . . . . . . . 10 (𝜑 → ((𝐴𝑋) − -𝑋) = ((𝐴𝑋) + 𝑋))
4727, 44npcand 10341 . . . . . . . . . 10 (𝜑 → ((𝐴𝑋) + 𝑋) = 𝐴)
4846, 47eqtrd 2660 . . . . . . . . 9 (𝜑 → ((𝐴𝑋) − -𝑋) = 𝐴)
4931, 44subcld 10337 . . . . . . . . . . 11 (𝜑 → (𝐵𝑋) ∈ ℂ)
5049, 44subnegd 10344 . . . . . . . . . 10 (𝜑 → ((𝐵𝑋) − -𝑋) = ((𝐵𝑋) + 𝑋))
5131, 44npcand 10341 . . . . . . . . . 10 (𝜑 → ((𝐵𝑋) + 𝑋) = 𝐵)
5250, 51eqtrd 2660 . . . . . . . . 9 (𝜑 → ((𝐵𝑋) − -𝑋) = 𝐵)
5348, 52oveq12d 6623 . . . . . . . 8 (𝜑 → (((𝐴𝑋) − -𝑋)[,]((𝐵𝑋) − -𝑋)) = (𝐴[,]𝐵))
5453eqcomd 2632 . . . . . . 7 (𝜑 → (𝐴[,]𝐵) = (((𝐴𝑋) − -𝑋)[,]((𝐵𝑋) − -𝑋)))
5554itgeq1d 39466 . . . . . 6 (𝜑 → ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 = ∫(((𝐴𝑋) − -𝑋)[,]((𝐵𝑋) − -𝑋))(𝐹𝑥) d𝑥)
5655adantr 481 . . . . 5 ((𝜑𝑋 < 0) → ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 = ∫(((𝐴𝑋) − -𝑋)[,]((𝐵𝑋) − -𝑋))(𝐹𝑥) d𝑥)
571, 6resubcld 10403 . . . . . . 7 (𝜑 → (𝐴𝑋) ∈ ℝ)
5857adantr 481 . . . . . 6 ((𝜑𝑋 < 0) → (𝐴𝑋) ∈ ℝ)
593, 6resubcld 10403 . . . . . . 7 (𝜑 → (𝐵𝑋) ∈ ℝ)
6059adantr 481 . . . . . 6 ((𝜑𝑋 < 0) → (𝐵𝑋) ∈ ℝ)
61 eqid 2626 . . . . . 6 ((𝐵𝑋) − (𝐴𝑋)) = ((𝐵𝑋) − (𝐴𝑋))
626renegcld 10402 . . . . . . . 8 (𝜑 → -𝑋 ∈ ℝ)
6362adantr 481 . . . . . . 7 ((𝜑𝑋 < 0) → -𝑋 ∈ ℝ)
646lt0neg1d 10542 . . . . . . . 8 (𝜑 → (𝑋 < 0 ↔ 0 < -𝑋))
6564biimpa 501 . . . . . . 7 ((𝜑𝑋 < 0) → 0 < -𝑋)
6663, 65elrpd 11813 . . . . . 6 ((𝜑𝑋 < 0) → -𝑋 ∈ ℝ+)
67 fourierdlem109.o . . . . . . 7 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = (𝐵𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
68 fveq2 6150 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → (𝑝𝑖) = (𝑝𝑗))
69 oveq1 6612 . . . . . . . . . . . . . 14 (𝑖 = 𝑗 → (𝑖 + 1) = (𝑗 + 1))
7069fveq2d 6154 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → (𝑝‘(𝑖 + 1)) = (𝑝‘(𝑗 + 1)))
7168, 70breq12d 4631 . . . . . . . . . . . 12 (𝑖 = 𝑗 → ((𝑝𝑖) < (𝑝‘(𝑖 + 1)) ↔ (𝑝𝑗) < (𝑝‘(𝑗 + 1))))
7271cbvralv 3164 . . . . . . . . . . 11 (∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)) ↔ ∀𝑗 ∈ (0..^𝑚)(𝑝𝑗) < (𝑝‘(𝑗 + 1)))
7372anbi2i 729 . . . . . . . . . 10 ((((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = (𝐵𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1))) ↔ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = (𝐵𝑋)) ∧ ∀𝑗 ∈ (0..^𝑚)(𝑝𝑗) < (𝑝‘(𝑗 + 1))))
7473a1i 11 . . . . . . . . 9 (𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) → ((((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = (𝐵𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1))) ↔ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = (𝐵𝑋)) ∧ ∀𝑗 ∈ (0..^𝑚)(𝑝𝑗) < (𝑝‘(𝑗 + 1)))))
7574rabbiia 3178 . . . . . . . 8 {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = (𝐵𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))} = {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = (𝐵𝑋)) ∧ ∀𝑗 ∈ (0..^𝑚)(𝑝𝑗) < (𝑝‘(𝑗 + 1)))}
7675mpteq2i 4706 . . . . . . 7 (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = (𝐵𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))}) = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = (𝐵𝑋)) ∧ ∀𝑗 ∈ (0..^𝑚)(𝑝𝑗) < (𝑝‘(𝑗 + 1)))})
7767, 76eqtri 2648 . . . . . 6 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = (𝐵𝑋)) ∧ ∀𝑗 ∈ (0..^𝑚)(𝑝𝑗) < (𝑝‘(𝑗 + 1)))})
7810, 11, 13fourierdlem11 39629 . . . . . . . . . . . 12 (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵))
7978simp3d 1073 . . . . . . . . . . 11 (𝜑𝐴 < 𝐵)
801, 3, 6, 79ltsub1dd 10584 . . . . . . . . . 10 (𝜑 → (𝐴𝑋) < (𝐵𝑋))
81 fourierdlem109.h . . . . . . . . . 10 𝐻 = ({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑥 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄})
82 fourierdlem109.n . . . . . . . . . 10 𝑁 = ((#‘𝐻) − 1)
83 fourierdlem109.16 . . . . . . . . . 10 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻))
845, 10, 11, 13, 57, 59, 80, 67, 81, 82, 83fourierdlem54 39671 . . . . . . . . 9 (𝜑 → ((𝑁 ∈ ℕ ∧ 𝑆 ∈ (𝑂𝑁)) ∧ 𝑆 Isom < , < ((0...𝑁), 𝐻)))
8584simpld 475 . . . . . . . 8 (𝜑 → (𝑁 ∈ ℕ ∧ 𝑆 ∈ (𝑂𝑁)))
8685simpld 475 . . . . . . 7 (𝜑𝑁 ∈ ℕ)
8786adantr 481 . . . . . 6 ((𝜑𝑋 < 0) → 𝑁 ∈ ℕ)
8885simprd 479 . . . . . . 7 (𝜑𝑆 ∈ (𝑂𝑁))
8988adantr 481 . . . . . 6 ((𝜑𝑋 < 0) → 𝑆 ∈ (𝑂𝑁))
9015adantr 481 . . . . . 6 ((𝜑𝑋 < 0) → 𝐹:ℝ⟶ℂ)
9131, 27, 44nnncan2d 10372 . . . . . . . . . . . 12 (𝜑 → ((𝐵𝑋) − (𝐴𝑋)) = (𝐵𝐴))
9291, 5syl6eqr 2678 . . . . . . . . . . 11 (𝜑 → ((𝐵𝑋) − (𝐴𝑋)) = 𝑇)
9392oveq2d 6621 . . . . . . . . . 10 (𝜑 → (𝑥 + ((𝐵𝑋) − (𝐴𝑋))) = (𝑥 + 𝑇))
9493adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (𝑥 + ((𝐵𝑋) − (𝐴𝑋))) = (𝑥 + 𝑇))
9594fveq2d 6154 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + ((𝐵𝑋) − (𝐴𝑋)))) = (𝐹‘(𝑥 + 𝑇)))
9695, 17eqtrd 2660 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + ((𝐵𝑋) − (𝐴𝑋)))) = (𝐹𝑥))
9796adantlr 750 . . . . . 6 (((𝜑𝑋 < 0) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + ((𝐵𝑋) − (𝐴𝑋)))) = (𝐹𝑥))
9811adantr 481 . . . . . . . 8 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝑀 ∈ ℕ)
9913adantr 481 . . . . . . . 8 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝑄 ∈ (𝑃𝑀))
10015adantr 481 . . . . . . . 8 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝐹:ℝ⟶ℂ)
10117adantlr 750 . . . . . . . 8 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
10219adantlr 750 . . . . . . . 8 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
10357adantr 481 . . . . . . . 8 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝐴𝑋) ∈ ℝ)
10457rexrd 10034 . . . . . . . . . 10 (𝜑 → (𝐴𝑋) ∈ ℝ*)
105 pnfxr 10037 . . . . . . . . . . 11 +∞ ∈ ℝ*
106105a1i 11 . . . . . . . . . 10 (𝜑 → +∞ ∈ ℝ*)
10759ltpnfd 11899 . . . . . . . . . 10 (𝜑 → (𝐵𝑋) < +∞)
108104, 106, 59, 80, 107eliood 39118 . . . . . . . . 9 (𝜑 → (𝐵𝑋) ∈ ((𝐴𝑋)(,)+∞))
109108adantr 481 . . . . . . . 8 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝐵𝑋) ∈ ((𝐴𝑋)(,)+∞))
110 oveq1 6612 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝑥 + (𝑘 · 𝑇)) = (𝑦 + (𝑘 · 𝑇)))
111110eleq1d 2688 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄))
112111rexbidv 3050 . . . . . . . . . . 11 (𝑥 = 𝑦 → (∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄))
113112cbvrabv 3190 . . . . . . . . . 10 {𝑥 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄} = {𝑦 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}
114113uneq2i 3747 . . . . . . . . 9 ({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑥 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑦 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})
11581, 114eqtri 2648 . . . . . . . 8 𝐻 = ({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑦 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})
116 fourierdlem109.17 . . . . . . . 8 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
117 fourierdlem109.18 . . . . . . . 8 𝐽 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))
118 simpr 477 . . . . . . . 8 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝑗 ∈ (0..^𝑁))
119 eqid 2626 . . . . . . . 8 ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))) = ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1))))
120 eqid 2626 . . . . . . . 8 (𝐹 ↾ ((𝐽‘(𝐸‘(𝑆𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1))))) = (𝐹 ↾ ((𝐽‘(𝐸‘(𝑆𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1)))))
121 eqid 2626 . . . . . . . 8 (𝑦 ∈ (((𝐽‘(𝐸‘(𝑆𝑗))) + ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))))(,)((𝐸‘(𝑆‘(𝑗 + 1))) + ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))))) ↦ ((𝐹 ↾ ((𝐽‘(𝐸‘(𝑆𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1)))))‘(𝑦 − ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1))))))) = (𝑦 ∈ (((𝐽‘(𝐸‘(𝑆𝑗))) + ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))))(,)((𝐸‘(𝑆‘(𝑗 + 1))) + ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))))) ↦ ((𝐹 ↾ ((𝐽‘(𝐸‘(𝑆𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1)))))‘(𝑦 − ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))))))
122 fourierdlem109.19 . . . . . . . . 9 𝐼 = (𝑥 ∈ ℝ ↦ sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) ≤ (𝐽‘(𝐸𝑥))}, ℝ, < ))
123 fveq2 6150 . . . . . . . . . . . . 13 (𝑗 = 𝑖 → (𝑄𝑗) = (𝑄𝑖))
124123breq1d 4628 . . . . . . . . . . . 12 (𝑗 = 𝑖 → ((𝑄𝑗) ≤ (𝐽‘(𝐸𝑥)) ↔ (𝑄𝑖) ≤ (𝐽‘(𝐸𝑥))))
125124cbvrabv 3190 . . . . . . . . . . 11 {𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) ≤ (𝐽‘(𝐸𝑥))} = {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐽‘(𝐸𝑥))}
126125supeq1i 8298 . . . . . . . . . 10 sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) ≤ (𝐽‘(𝐸𝑥))}, ℝ, < ) = sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐽‘(𝐸𝑥))}, ℝ, < )
127126mpteq2i 4706 . . . . . . . . 9 (𝑥 ∈ ℝ ↦ sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) ≤ (𝐽‘(𝐸𝑥))}, ℝ, < )) = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐽‘(𝐸𝑥))}, ℝ, < ))
128122, 127eqtri 2648 . . . . . . . 8 𝐼 = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐽‘(𝐸𝑥))}, ℝ, < ))
12910, 5, 98, 99, 100, 101, 102, 103, 109, 67, 115, 82, 83, 116, 117, 118, 119, 120, 121, 128fourierdlem90 39707 . . . . . . 7 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝐹 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ))
130129adantlr 750 . . . . . 6 (((𝜑𝑋 < 0) ∧ 𝑗 ∈ (0..^𝑁)) → (𝐹 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ))
13121adantlr 750 . . . . . . . 8 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
132 eqid 2626 . . . . . . . 8 (𝑖 ∈ (0..^𝑀) ↦ 𝑅) = (𝑖 ∈ (0..^𝑀) ↦ 𝑅)
13310, 5, 98, 99, 100, 101, 102, 131, 103, 109, 67, 115, 82, 83, 116, 117, 118, 119, 128, 132fourierdlem89 39706 . . . . . . 7 ((𝜑𝑗 ∈ (0..^𝑁)) → if((𝐽‘(𝐸‘(𝑆𝑗))) = (𝑄‘(𝐼‘(𝑆𝑗))), ((𝑖 ∈ (0..^𝑀) ↦ 𝑅)‘(𝐼‘(𝑆𝑗))), (𝐹‘(𝐽‘(𝐸‘(𝑆𝑗))))) ∈ ((𝐹 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗)))
134133adantlr 750 . . . . . 6 (((𝜑𝑋 < 0) ∧ 𝑗 ∈ (0..^𝑁)) → if((𝐽‘(𝐸‘(𝑆𝑗))) = (𝑄‘(𝐼‘(𝑆𝑗))), ((𝑖 ∈ (0..^𝑀) ↦ 𝑅)‘(𝐼‘(𝑆𝑗))), (𝐹‘(𝐽‘(𝐸‘(𝑆𝑗))))) ∈ ((𝐹 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗)))
13523adantlr 750 . . . . . . . 8 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
136 eqid 2626 . . . . . . . 8 (𝑖 ∈ (0..^𝑀) ↦ 𝐿) = (𝑖 ∈ (0..^𝑀) ↦ 𝐿)
13710, 5, 98, 99, 100, 101, 102, 135, 103, 109, 67, 115, 82, 83, 116, 117, 118, 119, 128, 136fourierdlem91 39708 . . . . . . 7 ((𝜑𝑗 ∈ (0..^𝑁)) → if((𝐸‘(𝑆‘(𝑗 + 1))) = (𝑄‘((𝐼‘(𝑆𝑗)) + 1)), ((𝑖 ∈ (0..^𝑀) ↦ 𝐿)‘(𝐼‘(𝑆𝑗))), (𝐹‘(𝐸‘(𝑆‘(𝑗 + 1))))) ∈ ((𝐹 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))))
138137adantlr 750 . . . . . 6 (((𝜑𝑋 < 0) ∧ 𝑗 ∈ (0..^𝑁)) → if((𝐸‘(𝑆‘(𝑗 + 1))) = (𝑄‘((𝐼‘(𝑆𝑗)) + 1)), ((𝑖 ∈ (0..^𝑀) ↦ 𝐿)‘(𝐼‘(𝑆𝑗))), (𝐹‘(𝐸‘(𝑆‘(𝑗 + 1))))) ∈ ((𝐹 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))))
13958, 60, 61, 66, 77, 87, 89, 90, 97, 130, 134, 138fourierdlem108 39725 . . . . 5 ((𝜑𝑋 < 0) → ∫(((𝐴𝑋) − -𝑋)[,]((𝐵𝑋) − -𝑋))(𝐹𝑥) d𝑥 = ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥)
14056, 139eqtr2d 2661 . . . 4 ((𝜑𝑋 < 0) → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
14137, 43, 140syl2anc 692 . . 3 (((𝜑 ∧ ¬ 0 < 𝑋) ∧ ¬ 𝑋 = 0) → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
14236, 141pm2.61dan 831 . 2 ((𝜑 ∧ ¬ 0 < 𝑋) → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
14325, 142pm2.61dan 831 1 (𝜑 → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1480  wcel 1992  wral 2912  wrex 2913  {crab 2916  cun 3558  ifcif 4063  {cpr 4155   class class class wbr 4618  cmpt 4678  ran crn 5080  cres 5081  cio 5811  wf 5846  cfv 5850   Isom wiso 5851  (class class class)co 6605  𝑚 cmap 7803  supcsup 8291  cc 9879  cr 9880  0cc0 9881  1c1 9882   + caddc 9884   · cmul 9886  +∞cpnf 10016  *cxr 10018   < clt 10019  cle 10020  cmin 10211  -cneg 10212   / cdiv 10629  cn 10965  cz 11322  (,)cioo 12114  (,]cioc 12115  [,]cicc 12117  ...cfz 12265  ..^cfzo 12403  cfl 12528  #chash 13054  cnccncf 22582  citg 23288   lim climc 23527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-inf2 8483  ax-cc 9202  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958  ax-pre-sup 9959  ax-addf 9960  ax-mulf 9961
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-disj 4589  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-isom 5859  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-of 6851  df-ofr 6852  df-om 7014  df-1st 7116  df-2nd 7117  df-supp 7242  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-1o 7506  df-2o 7507  df-oadd 7510  df-omul 7511  df-er 7688  df-map 7805  df-pm 7806  df-ixp 7854  df-en 7901  df-dom 7902  df-sdom 7903  df-fin 7904  df-fsupp 8221  df-fi 8262  df-sup 8293  df-inf 8294  df-oi 8360  df-card 8710  df-acn 8713  df-cda 8935  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-div 10630  df-nn 10966  df-2 11024  df-3 11025  df-4 11026  df-5 11027  df-6 11028  df-7 11029  df-8 11030  df-9 11031  df-n0 11238  df-xnn0 11309  df-z 11323  df-dec 11438  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-ioo 12118  df-ioc 12119  df-ico 12120  df-icc 12121  df-fz 12266  df-fzo 12404  df-fl 12530  df-mod 12606  df-seq 12739  df-exp 12798  df-hash 13055  df-cj 13768  df-re 13769  df-im 13770  df-sqrt 13904  df-abs 13905  df-limsup 14131  df-clim 14148  df-rlim 14149  df-sum 14346  df-struct 15778  df-ndx 15779  df-slot 15780  df-base 15781  df-sets 15782  df-ress 15783  df-plusg 15870  df-mulr 15871  df-starv 15872  df-sca 15873  df-vsca 15874  df-ip 15875  df-tset 15876  df-ple 15877  df-ds 15880  df-unif 15881  df-hom 15882  df-cco 15883  df-rest 15999  df-topn 16000  df-0g 16018  df-gsum 16019  df-topgen 16020  df-pt 16021  df-prds 16024  df-xrs 16078  df-qtop 16083  df-imas 16084  df-xps 16086  df-mre 16162  df-mrc 16163  df-acs 16165  df-mgm 17158  df-sgrp 17200  df-mnd 17211  df-submnd 17252  df-mulg 17457  df-cntz 17666  df-cmn 18111  df-psmet 19652  df-xmet 19653  df-met 19654  df-bl 19655  df-mopn 19656  df-fbas 19657  df-fg 19658  df-cnfld 19661  df-top 20616  df-bases 20617  df-topon 20618  df-topsp 20619  df-cld 20728  df-ntr 20729  df-cls 20730  df-nei 20807  df-lp 20845  df-perf 20846  df-cn 20936  df-cnp 20937  df-haus 21024  df-cmp 21095  df-tx 21270  df-hmeo 21463  df-fil 21555  df-fm 21647  df-flim 21648  df-flf 21649  df-xms 22030  df-ms 22031  df-tms 22032  df-cncf 22584  df-ovol 23135  df-vol 23136  df-mbf 23289  df-itg1 23290  df-itg2 23291  df-ibl 23292  df-itg 23293  df-0p 23338  df-ditg 23512  df-limc 23531  df-dv 23532
This theorem is referenced by:  fourierdlem110  39727
  Copyright terms: Public domain W3C validator