Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem11 Structured version   Visualization version   GIF version

Theorem fourierdlem11 42410
Description: If there is a partition, than the lower bound is strictly less than the upper bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem11.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem11.m (𝜑𝑀 ∈ ℕ)
fourierdlem11.q (𝜑𝑄 ∈ (𝑃𝑀))
Assertion
Ref Expression
fourierdlem11 (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵))
Distinct variable groups:   𝐴,𝑚,𝑝   𝐵,𝑚,𝑝   𝑖,𝑀,𝑚,𝑝   𝑄,𝑖,𝑝   𝜑,𝑖
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝐴(𝑖)   𝐵(𝑖)   𝑃(𝑖,𝑚,𝑝)   𝑄(𝑚)

Proof of Theorem fourierdlem11
StepHypRef Expression
1 fourierdlem11.q . . . . . . 7 (𝜑𝑄 ∈ (𝑃𝑀))
2 fourierdlem11.m . . . . . . . 8 (𝜑𝑀 ∈ ℕ)
3 fourierdlem11.p . . . . . . . . 9 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
43fourierdlem2 42401 . . . . . . . 8 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
52, 4syl 17 . . . . . . 7 (𝜑 → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
61, 5mpbid 234 . . . . . 6 (𝜑 → (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
76simprd 498 . . . . 5 (𝜑 → (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))
87simpld 497 . . . 4 (𝜑 → ((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵))
98simpld 497 . . 3 (𝜑 → (𝑄‘0) = 𝐴)
106simpld 497 . . . . 5 (𝜑𝑄 ∈ (ℝ ↑m (0...𝑀)))
11 elmapi 8431 . . . . 5 (𝑄 ∈ (ℝ ↑m (0...𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
1210, 11syl 17 . . . 4 (𝜑𝑄:(0...𝑀)⟶ℝ)
13 0red 10647 . . . . . 6 (𝜑 → 0 ∈ ℝ)
1413leidd 11209 . . . . 5 (𝜑 → 0 ≤ 0)
152nnred 11656 . . . . . 6 (𝜑𝑀 ∈ ℝ)
162nngt0d 11689 . . . . . 6 (𝜑 → 0 < 𝑀)
1713, 15, 16ltled 10791 . . . . 5 (𝜑 → 0 ≤ 𝑀)
18 0zd 11996 . . . . . 6 (𝜑 → 0 ∈ ℤ)
192nnzd 12089 . . . . . 6 (𝜑𝑀 ∈ ℤ)
20 elfz 12901 . . . . . 6 ((0 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (0 ∈ (0...𝑀) ↔ (0 ≤ 0 ∧ 0 ≤ 𝑀)))
2118, 18, 19, 20syl3anc 1367 . . . . 5 (𝜑 → (0 ∈ (0...𝑀) ↔ (0 ≤ 0 ∧ 0 ≤ 𝑀)))
2214, 17, 21mpbir2and 711 . . . 4 (𝜑 → 0 ∈ (0...𝑀))
2312, 22ffvelrnd 6855 . . 3 (𝜑 → (𝑄‘0) ∈ ℝ)
249, 23eqeltrrd 2917 . 2 (𝜑𝐴 ∈ ℝ)
258simprd 498 . . 3 (𝜑 → (𝑄𝑀) = 𝐵)
2615leidd 11209 . . . . 5 (𝜑𝑀𝑀)
27 elfz 12901 . . . . . 6 ((𝑀 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 ∈ (0...𝑀) ↔ (0 ≤ 𝑀𝑀𝑀)))
2819, 18, 19, 27syl3anc 1367 . . . . 5 (𝜑 → (𝑀 ∈ (0...𝑀) ↔ (0 ≤ 𝑀𝑀𝑀)))
2917, 26, 28mpbir2and 711 . . . 4 (𝜑𝑀 ∈ (0...𝑀))
3012, 29ffvelrnd 6855 . . 3 (𝜑 → (𝑄𝑀) ∈ ℝ)
3125, 30eqeltrrd 2917 . 2 (𝜑𝐵 ∈ ℝ)
32 0le1 11166 . . . . . 6 0 ≤ 1
3332a1i 11 . . . . 5 (𝜑 → 0 ≤ 1)
342nnge1d 11688 . . . . 5 (𝜑 → 1 ≤ 𝑀)
35 1zzd 12016 . . . . . 6 (𝜑 → 1 ∈ ℤ)
36 elfz 12901 . . . . . 6 ((1 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (1 ∈ (0...𝑀) ↔ (0 ≤ 1 ∧ 1 ≤ 𝑀)))
3735, 18, 19, 36syl3anc 1367 . . . . 5 (𝜑 → (1 ∈ (0...𝑀) ↔ (0 ≤ 1 ∧ 1 ≤ 𝑀)))
3833, 34, 37mpbir2and 711 . . . 4 (𝜑 → 1 ∈ (0...𝑀))
3912, 38ffvelrnd 6855 . . 3 (𝜑 → (𝑄‘1) ∈ ℝ)
40 elfzo 13043 . . . . . . 7 ((0 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (0 ∈ (0..^𝑀) ↔ (0 ≤ 0 ∧ 0 < 𝑀)))
4118, 18, 19, 40syl3anc 1367 . . . . . 6 (𝜑 → (0 ∈ (0..^𝑀) ↔ (0 ≤ 0 ∧ 0 < 𝑀)))
4214, 16, 41mpbir2and 711 . . . . 5 (𝜑 → 0 ∈ (0..^𝑀))
43 0re 10646 . . . . . 6 0 ∈ ℝ
44 eleq1 2903 . . . . . . . . 9 (𝑖 = 0 → (𝑖 ∈ (0..^𝑀) ↔ 0 ∈ (0..^𝑀)))
4544anbi2d 630 . . . . . . . 8 (𝑖 = 0 → ((𝜑𝑖 ∈ (0..^𝑀)) ↔ (𝜑 ∧ 0 ∈ (0..^𝑀))))
46 fveq2 6673 . . . . . . . . 9 (𝑖 = 0 → (𝑄𝑖) = (𝑄‘0))
47 oveq1 7166 . . . . . . . . . 10 (𝑖 = 0 → (𝑖 + 1) = (0 + 1))
4847fveq2d 6677 . . . . . . . . 9 (𝑖 = 0 → (𝑄‘(𝑖 + 1)) = (𝑄‘(0 + 1)))
4946, 48breq12d 5082 . . . . . . . 8 (𝑖 = 0 → ((𝑄𝑖) < (𝑄‘(𝑖 + 1)) ↔ (𝑄‘0) < (𝑄‘(0 + 1))))
5045, 49imbi12d 347 . . . . . . 7 (𝑖 = 0 → (((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1))) ↔ ((𝜑 ∧ 0 ∈ (0..^𝑀)) → (𝑄‘0) < (𝑄‘(0 + 1)))))
517simprd 498 . . . . . . . 8 (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))
5251r19.21bi 3211 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
5350, 52vtoclg 3570 . . . . . 6 (0 ∈ ℝ → ((𝜑 ∧ 0 ∈ (0..^𝑀)) → (𝑄‘0) < (𝑄‘(0 + 1))))
5443, 53ax-mp 5 . . . . 5 ((𝜑 ∧ 0 ∈ (0..^𝑀)) → (𝑄‘0) < (𝑄‘(0 + 1)))
5542, 54mpdan 685 . . . 4 (𝜑 → (𝑄‘0) < (𝑄‘(0 + 1)))
56 0p1e1 11762 . . . . . 6 (0 + 1) = 1
5756a1i 11 . . . . 5 (𝜑 → (0 + 1) = 1)
5857fveq2d 6677 . . . 4 (𝜑 → (𝑄‘(0 + 1)) = (𝑄‘1))
5955, 9, 583brtr3d 5100 . . 3 (𝜑𝐴 < (𝑄‘1))
60 nnuz 12284 . . . . . 6 ℕ = (ℤ‘1)
612, 60eleqtrdi 2926 . . . . 5 (𝜑𝑀 ∈ (ℤ‘1))
6212adantr 483 . . . . . 6 ((𝜑𝑖 ∈ (1...𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
63 0red 10647 . . . . . . . . 9 (𝑖 ∈ (1...𝑀) → 0 ∈ ℝ)
64 elfzelz 12911 . . . . . . . . . 10 (𝑖 ∈ (1...𝑀) → 𝑖 ∈ ℤ)
6564zred 12090 . . . . . . . . 9 (𝑖 ∈ (1...𝑀) → 𝑖 ∈ ℝ)
66 1red 10645 . . . . . . . . . 10 (𝑖 ∈ (1...𝑀) → 1 ∈ ℝ)
67 0lt1 11165 . . . . . . . . . . 11 0 < 1
6867a1i 11 . . . . . . . . . 10 (𝑖 ∈ (1...𝑀) → 0 < 1)
69 elfzle1 12913 . . . . . . . . . 10 (𝑖 ∈ (1...𝑀) → 1 ≤ 𝑖)
7063, 66, 65, 68, 69ltletrd 10803 . . . . . . . . 9 (𝑖 ∈ (1...𝑀) → 0 < 𝑖)
7163, 65, 70ltled 10791 . . . . . . . 8 (𝑖 ∈ (1...𝑀) → 0 ≤ 𝑖)
72 elfzle2 12914 . . . . . . . 8 (𝑖 ∈ (1...𝑀) → 𝑖𝑀)
73 0zd 11996 . . . . . . . . 9 (𝑖 ∈ (1...𝑀) → 0 ∈ ℤ)
74 elfzel2 12909 . . . . . . . . 9 (𝑖 ∈ (1...𝑀) → 𝑀 ∈ ℤ)
75 elfz 12901 . . . . . . . . 9 ((𝑖 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑖 ∈ (0...𝑀) ↔ (0 ≤ 𝑖𝑖𝑀)))
7664, 73, 74, 75syl3anc 1367 . . . . . . . 8 (𝑖 ∈ (1...𝑀) → (𝑖 ∈ (0...𝑀) ↔ (0 ≤ 𝑖𝑖𝑀)))
7771, 72, 76mpbir2and 711 . . . . . . 7 (𝑖 ∈ (1...𝑀) → 𝑖 ∈ (0...𝑀))
7877adantl 484 . . . . . 6 ((𝜑𝑖 ∈ (1...𝑀)) → 𝑖 ∈ (0...𝑀))
7962, 78ffvelrnd 6855 . . . . 5 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑄𝑖) ∈ ℝ)
8012adantr 483 . . . . . . 7 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 𝑄:(0...𝑀)⟶ℝ)
81 0red 10647 . . . . . . . . . 10 (𝑖 ∈ (1...(𝑀 − 1)) → 0 ∈ ℝ)
82 elfzelz 12911 . . . . . . . . . . 11 (𝑖 ∈ (1...(𝑀 − 1)) → 𝑖 ∈ ℤ)
8382zred 12090 . . . . . . . . . 10 (𝑖 ∈ (1...(𝑀 − 1)) → 𝑖 ∈ ℝ)
84 1red 10645 . . . . . . . . . . 11 (𝑖 ∈ (1...(𝑀 − 1)) → 1 ∈ ℝ)
8567a1i 11 . . . . . . . . . . 11 (𝑖 ∈ (1...(𝑀 − 1)) → 0 < 1)
86 elfzle1 12913 . . . . . . . . . . 11 (𝑖 ∈ (1...(𝑀 − 1)) → 1 ≤ 𝑖)
8781, 84, 83, 85, 86ltletrd 10803 . . . . . . . . . 10 (𝑖 ∈ (1...(𝑀 − 1)) → 0 < 𝑖)
8881, 83, 87ltled 10791 . . . . . . . . 9 (𝑖 ∈ (1...(𝑀 − 1)) → 0 ≤ 𝑖)
8988adantl 484 . . . . . . . 8 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 0 ≤ 𝑖)
9083adantl 484 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 𝑖 ∈ ℝ)
9115adantr 483 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 𝑀 ∈ ℝ)
92 peano2rem 10956 . . . . . . . . . . 11 (𝑀 ∈ ℝ → (𝑀 − 1) ∈ ℝ)
9391, 92syl 17 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑀 − 1) ∈ ℝ)
94 elfzle2 12914 . . . . . . . . . . 11 (𝑖 ∈ (1...(𝑀 − 1)) → 𝑖 ≤ (𝑀 − 1))
9594adantl 484 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 𝑖 ≤ (𝑀 − 1))
9691ltm1d 11575 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑀 − 1) < 𝑀)
9790, 93, 91, 95, 96lelttrd 10801 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 𝑖 < 𝑀)
9890, 91, 97ltled 10791 . . . . . . . 8 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 𝑖𝑀)
9982adantl 484 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 𝑖 ∈ ℤ)
100 0zd 11996 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 0 ∈ ℤ)
10119adantr 483 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 𝑀 ∈ ℤ)
10299, 100, 101, 75syl3anc 1367 . . . . . . . 8 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑖 ∈ (0...𝑀) ↔ (0 ≤ 𝑖𝑖𝑀)))
10389, 98, 102mpbir2and 711 . . . . . . 7 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 𝑖 ∈ (0...𝑀))
10480, 103ffvelrnd 6855 . . . . . 6 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑄𝑖) ∈ ℝ)
105 0red 10647 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 0 ∈ ℝ)
106 peano2re 10816 . . . . . . . . . 10 (𝑖 ∈ ℝ → (𝑖 + 1) ∈ ℝ)
10790, 106syl 17 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑖 + 1) ∈ ℝ)
108 1red 10645 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 1 ∈ ℝ)
10967a1i 11 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 0 < 1)
11083, 106syl 17 . . . . . . . . . . . 12 (𝑖 ∈ (1...(𝑀 − 1)) → (𝑖 + 1) ∈ ℝ)
11183ltp1d 11573 . . . . . . . . . . . 12 (𝑖 ∈ (1...(𝑀 − 1)) → 𝑖 < (𝑖 + 1))
11284, 83, 110, 86, 111lelttrd 10801 . . . . . . . . . . 11 (𝑖 ∈ (1...(𝑀 − 1)) → 1 < (𝑖 + 1))
113112adantl 484 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 1 < (𝑖 + 1))
114105, 108, 107, 109, 113lttrd 10804 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 0 < (𝑖 + 1))
115105, 107, 114ltled 10791 . . . . . . . 8 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 0 ≤ (𝑖 + 1))
11690, 93, 108, 95leadd1dd 11257 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑖 + 1) ≤ ((𝑀 − 1) + 1))
1172nncnd 11657 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℂ)
118 1cnd 10639 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℂ)
119117, 118npcand 11004 . . . . . . . . . 10 (𝜑 → ((𝑀 − 1) + 1) = 𝑀)
120119adantr 483 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → ((𝑀 − 1) + 1) = 𝑀)
121116, 120breqtrd 5095 . . . . . . . 8 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑖 + 1) ≤ 𝑀)
12299peano2zd 12093 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑖 + 1) ∈ ℤ)
123 elfz 12901 . . . . . . . . 9 (((𝑖 + 1) ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑖 + 1) ∈ (0...𝑀) ↔ (0 ≤ (𝑖 + 1) ∧ (𝑖 + 1) ≤ 𝑀)))
124122, 100, 101, 123syl3anc 1367 . . . . . . . 8 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → ((𝑖 + 1) ∈ (0...𝑀) ↔ (0 ≤ (𝑖 + 1) ∧ (𝑖 + 1) ≤ 𝑀)))
125115, 121, 124mpbir2and 711 . . . . . . 7 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑖 + 1) ∈ (0...𝑀))
12680, 125ffvelrnd 6855 . . . . . 6 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
127 elfzo 13043 . . . . . . . . 9 ((𝑖 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑖 ∈ (0..^𝑀) ↔ (0 ≤ 𝑖𝑖 < 𝑀)))
12899, 100, 101, 127syl3anc 1367 . . . . . . . 8 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑖 ∈ (0..^𝑀) ↔ (0 ≤ 𝑖𝑖 < 𝑀)))
12989, 97, 128mpbir2and 711 . . . . . . 7 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 𝑖 ∈ (0..^𝑀))
130129, 52syldan 593 . . . . . 6 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
131104, 126, 130ltled 10791 . . . . 5 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑄𝑖) ≤ (𝑄‘(𝑖 + 1)))
13261, 79, 131monoord 13403 . . . 4 (𝜑 → (𝑄‘1) ≤ (𝑄𝑀))
133132, 25breqtrd 5095 . . 3 (𝜑 → (𝑄‘1) ≤ 𝐵)
13424, 39, 31, 59, 133ltletrd 10803 . 2 (𝜑𝐴 < 𝐵)
13524, 31, 1343jca 1124 1 (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  wral 3141  {crab 3145   class class class wbr 5069  cmpt 5149  wf 6354  cfv 6358  (class class class)co 7159  m cmap 8409  cr 10539  0cc0 10540  1c1 10541   + caddc 10543   < clt 10678  cle 10679  cmin 10873  cn 11641  cz 11984  cuz 12246  ...cfz 12895  ..^cfzo 13036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-map 8411  df-en 8513  df-dom 8514  df-sdom 8515  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-fzo 13037
This theorem is referenced by:  fourierdlem37  42436  fourierdlem54  42452  fourierdlem63  42461  fourierdlem64  42462  fourierdlem65  42463  fourierdlem69  42467  fourierdlem79  42477  fourierdlem89  42487  fourierdlem90  42488  fourierdlem91  42489  fourierdlem107  42505  fourierdlem109  42507
  Copyright terms: Public domain W3C validator