Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem18 Structured version   Visualization version   GIF version

Theorem fourierdlem18 42287
Description: The function 𝑆 is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem18.n (𝜑𝑁 ∈ ℝ)
fourierdlem18.s 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑠)))
Assertion
Ref Expression
fourierdlem18 (𝜑𝑆 ∈ ((-π[,]π)–cn→ℝ))
Distinct variable groups:   𝑁,𝑠   𝜑,𝑠
Allowed substitution hint:   𝑆(𝑠)

Proof of Theorem fourierdlem18
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 resincncf 42034 . . . . 5 (sin ↾ ℝ) ∈ (ℝ–cn→ℝ)
2 cncff 23428 . . . . 5 ((sin ↾ ℝ) ∈ (ℝ–cn→ℝ) → (sin ↾ ℝ):ℝ⟶ℝ)
31, 2ax-mp 5 . . . 4 (sin ↾ ℝ):ℝ⟶ℝ
4 fourierdlem18.n . . . . . . . 8 (𝜑𝑁 ∈ ℝ)
5 halfre 11839 . . . . . . . . 9 (1 / 2) ∈ ℝ
65a1i 11 . . . . . . . 8 (𝜑 → (1 / 2) ∈ ℝ)
74, 6readdcld 10658 . . . . . . 7 (𝜑 → (𝑁 + (1 / 2)) ∈ ℝ)
87adantr 481 . . . . . 6 ((𝜑𝑠 ∈ (-π[,]π)) → (𝑁 + (1 / 2)) ∈ ℝ)
9 pire 24971 . . . . . . . . . 10 π ∈ ℝ
109renegcli 10935 . . . . . . . . 9 -π ∈ ℝ
11 iccssre 12806 . . . . . . . . 9 ((-π ∈ ℝ ∧ π ∈ ℝ) → (-π[,]π) ⊆ ℝ)
1210, 9, 11mp2an 688 . . . . . . . 8 (-π[,]π) ⊆ ℝ
1312sseli 3960 . . . . . . 7 (𝑠 ∈ (-π[,]π) → 𝑠 ∈ ℝ)
1413adantl 482 . . . . . 6 ((𝜑𝑠 ∈ (-π[,]π)) → 𝑠 ∈ ℝ)
158, 14remulcld 10659 . . . . 5 ((𝜑𝑠 ∈ (-π[,]π)) → ((𝑁 + (1 / 2)) · 𝑠) ∈ ℝ)
16 eqid 2818 . . . . 5 (𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠)) = (𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠))
1715, 16fmptd 6870 . . . 4 (𝜑 → (𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠)):(-π[,]π)⟶ℝ)
18 fcompt 6887 . . . 4 (((sin ↾ ℝ):ℝ⟶ℝ ∧ (𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠)):(-π[,]π)⟶ℝ) → ((sin ↾ ℝ) ∘ (𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠))) = (𝑥 ∈ (-π[,]π) ↦ ((sin ↾ ℝ)‘((𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠))‘𝑥))))
193, 17, 18sylancr 587 . . 3 (𝜑 → ((sin ↾ ℝ) ∘ (𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠))) = (𝑥 ∈ (-π[,]π) ↦ ((sin ↾ ℝ)‘((𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠))‘𝑥))))
20 eqidd 2819 . . . . . . 7 ((𝜑𝑥 ∈ (-π[,]π)) → (𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠)) = (𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠)))
21 oveq2 7153 . . . . . . . 8 (𝑠 = 𝑥 → ((𝑁 + (1 / 2)) · 𝑠) = ((𝑁 + (1 / 2)) · 𝑥))
2221adantl 482 . . . . . . 7 (((𝜑𝑥 ∈ (-π[,]π)) ∧ 𝑠 = 𝑥) → ((𝑁 + (1 / 2)) · 𝑠) = ((𝑁 + (1 / 2)) · 𝑥))
23 simpr 485 . . . . . . 7 ((𝜑𝑥 ∈ (-π[,]π)) → 𝑥 ∈ (-π[,]π))
247adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ (-π[,]π)) → (𝑁 + (1 / 2)) ∈ ℝ)
2512, 23sseldi 3962 . . . . . . . 8 ((𝜑𝑥 ∈ (-π[,]π)) → 𝑥 ∈ ℝ)
2624, 25remulcld 10659 . . . . . . 7 ((𝜑𝑥 ∈ (-π[,]π)) → ((𝑁 + (1 / 2)) · 𝑥) ∈ ℝ)
2720, 22, 23, 26fvmptd 6767 . . . . . 6 ((𝜑𝑥 ∈ (-π[,]π)) → ((𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠))‘𝑥) = ((𝑁 + (1 / 2)) · 𝑥))
2827fveq2d 6667 . . . . 5 ((𝜑𝑥 ∈ (-π[,]π)) → ((sin ↾ ℝ)‘((𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠))‘𝑥)) = ((sin ↾ ℝ)‘((𝑁 + (1 / 2)) · 𝑥)))
2928mpteq2dva 5152 . . . 4 (𝜑 → (𝑥 ∈ (-π[,]π) ↦ ((sin ↾ ℝ)‘((𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠))‘𝑥))) = (𝑥 ∈ (-π[,]π) ↦ ((sin ↾ ℝ)‘((𝑁 + (1 / 2)) · 𝑥))))
30 fvres 6682 . . . . . 6 (((𝑁 + (1 / 2)) · 𝑥) ∈ ℝ → ((sin ↾ ℝ)‘((𝑁 + (1 / 2)) · 𝑥)) = (sin‘((𝑁 + (1 / 2)) · 𝑥)))
3126, 30syl 17 . . . . 5 ((𝜑𝑥 ∈ (-π[,]π)) → ((sin ↾ ℝ)‘((𝑁 + (1 / 2)) · 𝑥)) = (sin‘((𝑁 + (1 / 2)) · 𝑥)))
3231mpteq2dva 5152 . . . 4 (𝜑 → (𝑥 ∈ (-π[,]π) ↦ ((sin ↾ ℝ)‘((𝑁 + (1 / 2)) · 𝑥))) = (𝑥 ∈ (-π[,]π) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑥))))
33 oveq2 7153 . . . . . . 7 (𝑥 = 𝑠 → ((𝑁 + (1 / 2)) · 𝑥) = ((𝑁 + (1 / 2)) · 𝑠))
3433fveq2d 6667 . . . . . 6 (𝑥 = 𝑠 → (sin‘((𝑁 + (1 / 2)) · 𝑥)) = (sin‘((𝑁 + (1 / 2)) · 𝑠)))
3534cbvmptv 5160 . . . . 5 (𝑥 ∈ (-π[,]π) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑥))) = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑠)))
3635a1i 11 . . . 4 (𝜑 → (𝑥 ∈ (-π[,]π) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑥))) = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑠))))
3729, 32, 363eqtrd 2857 . . 3 (𝜑 → (𝑥 ∈ (-π[,]π) ↦ ((sin ↾ ℝ)‘((𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠))‘𝑥))) = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑠))))
38 fourierdlem18.s . . . . 5 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑠)))
3938eqcomi 2827 . . . 4 (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑠))) = 𝑆
4039a1i 11 . . 3 (𝜑 → (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑠))) = 𝑆)
4119, 37, 403eqtrrd 2858 . 2 (𝜑𝑆 = ((sin ↾ ℝ) ∘ (𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠))))
42 ax-resscn 10582 . . . . . . . 8 ℝ ⊆ ℂ
4312, 42sstri 3973 . . . . . . 7 (-π[,]π) ⊆ ℂ
4443a1i 11 . . . . . 6 (𝜑 → (-π[,]π) ⊆ ℂ)
454recnd 10657 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
46 halfcn 11840 . . . . . . . 8 (1 / 2) ∈ ℂ
4746a1i 11 . . . . . . 7 (𝜑 → (1 / 2) ∈ ℂ)
4845, 47addcld 10648 . . . . . 6 (𝜑 → (𝑁 + (1 / 2)) ∈ ℂ)
49 ssid 3986 . . . . . . 7 ℂ ⊆ ℂ
5049a1i 11 . . . . . 6 (𝜑 → ℂ ⊆ ℂ)
5144, 48, 50constcncfg 42030 . . . . 5 (𝜑 → (𝑠 ∈ (-π[,]π) ↦ (𝑁 + (1 / 2))) ∈ ((-π[,]π)–cn→ℂ))
5244, 50idcncfg 42031 . . . . 5 (𝜑 → (𝑠 ∈ (-π[,]π) ↦ 𝑠) ∈ ((-π[,]π)–cn→ℂ))
5351, 52mulcncf 23974 . . . 4 (𝜑 → (𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠)) ∈ ((-π[,]π)–cn→ℂ))
54 ssid 3986 . . . . 5 (-π[,]π) ⊆ (-π[,]π)
5554a1i 11 . . . 4 (𝜑 → (-π[,]π) ⊆ (-π[,]π))
5642a1i 11 . . . 4 (𝜑 → ℝ ⊆ ℂ)
5716, 53, 55, 56, 15cncfmptssg 42029 . . 3 (𝜑 → (𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠)) ∈ ((-π[,]π)–cn→ℝ))
581a1i 11 . . 3 (𝜑 → (sin ↾ ℝ) ∈ (ℝ–cn→ℝ))
5957, 58cncfco 23442 . 2 (𝜑 → ((sin ↾ ℝ) ∘ (𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠))) ∈ ((-π[,]π)–cn→ℝ))
6041, 59eqeltrd 2910 1 (𝜑𝑆 ∈ ((-π[,]π)–cn→ℝ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  wss 3933  cmpt 5137  cres 5550  ccom 5552  wf 6344  cfv 6348  (class class class)co 7145  cc 10523  cr 10524  1c1 10526   + caddc 10528   · cmul 10530  -cneg 10859   / cdiv 11285  2c2 11680  [,]cicc 12729  sincsin 15405  πcpi 15408  cnccncf 23411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603  ax-addf 10604  ax-mulf 10605
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-om 7570  df-1st 7678  df-2nd 7679  df-supp 7820  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-er 8278  df-map 8397  df-pm 8398  df-ixp 8450  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12881  df-fzo 13022  df-fl 13150  df-seq 13358  df-exp 13418  df-fac 13622  df-bc 13651  df-hash 13679  df-shft 14414  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-limsup 14816  df-clim 14833  df-rlim 14834  df-sum 15031  df-ef 15409  df-sin 15411  df-cos 15412  df-pi 15414  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-starv 16568  df-sca 16569  df-vsca 16570  df-ip 16571  df-tset 16572  df-ple 16573  df-ds 16575  df-unif 16576  df-hom 16577  df-cco 16578  df-rest 16684  df-topn 16685  df-0g 16703  df-gsum 16704  df-topgen 16705  df-pt 16706  df-prds 16709  df-xrs 16763  df-qtop 16768  df-imas 16769  df-xps 16771  df-mre 16845  df-mrc 16846  df-acs 16848  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-submnd 17945  df-mulg 18163  df-cntz 18385  df-cmn 18837  df-psmet 20465  df-xmet 20466  df-met 20467  df-bl 20468  df-mopn 20469  df-fbas 20470  df-fg 20471  df-cnfld 20474  df-top 21430  df-topon 21447  df-topsp 21469  df-bases 21482  df-cld 21555  df-ntr 21556  df-cls 21557  df-nei 21634  df-lp 21672  df-perf 21673  df-cn 21763  df-cnp 21764  df-haus 21851  df-tx 22098  df-hmeo 22291  df-fil 22382  df-fm 22474  df-flim 22475  df-flf 22476  df-xms 22857  df-ms 22858  df-tms 22859  df-cncf 23413  df-limc 24391  df-dv 24392
This theorem is referenced by:  fourierdlem85  42353  fourierdlem88  42356
  Copyright terms: Public domain W3C validator