Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem19 Structured version   Visualization version   GIF version

Theorem fourierdlem19 42288
Description: If two elements of 𝐷 have the same periodic image in (𝐴(,]𝐵) then they are equal. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem19.a (𝜑𝐴 ∈ ℝ)
fourierdlem19.b (𝜑𝐵 ∈ ℝ)
fourierdlem19.altb (𝜑𝐴 < 𝐵)
fourierdlem19.x (𝜑𝑋 ∈ ℝ)
fourierdlem19.d 𝐷 = {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}
fourierdlem19.t 𝑇 = (𝐵𝐴)
fourierdlem19.e 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
fourierdlem19.w (𝜑𝑊𝐷)
fourierdlem19.z (𝜑𝑍𝐷)
fourierdlem19.ezew (𝜑 → (𝐸𝑍) = (𝐸𝑊))
Assertion
Ref Expression
fourierdlem19 (𝜑 → ¬ 𝑊 < 𝑍)
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴   𝑥,𝐵   𝑦,𝐵   𝑥,𝑇   𝑥,𝑊   𝑦,𝑋   𝑥,𝑍   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑘)   𝐴(𝑘)   𝐵(𝑘)   𝐶(𝑥,𝑦,𝑘)   𝐷(𝑥,𝑦,𝑘)   𝑇(𝑦,𝑘)   𝐸(𝑥,𝑦,𝑘)   𝑊(𝑦,𝑘)   𝑋(𝑥,𝑘)   𝑍(𝑦,𝑘)

Proof of Theorem fourierdlem19
StepHypRef Expression
1 fourierdlem19.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
2 fourierdlem19.x . . . . . 6 (𝜑𝑋 ∈ ℝ)
31, 2readdcld 10658 . . . . 5 (𝜑 → (𝐴 + 𝑋) ∈ ℝ)
43rexrd 10679 . . . 4 (𝜑 → (𝐴 + 𝑋) ∈ ℝ*)
5 fourierdlem19.b . . . . . 6 (𝜑𝐵 ∈ ℝ)
65, 2readdcld 10658 . . . . 5 (𝜑 → (𝐵 + 𝑋) ∈ ℝ)
76rexrd 10679 . . . 4 (𝜑 → (𝐵 + 𝑋) ∈ ℝ*)
8 fourierdlem19.d . . . . . 6 𝐷 = {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶}
9 ssrab2 4053 . . . . . 6 {𝑦 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ 𝐶} ⊆ ((𝐴 + 𝑋)(,](𝐵 + 𝑋))
108, 9eqsstri 3998 . . . . 5 𝐷 ⊆ ((𝐴 + 𝑋)(,](𝐵 + 𝑋))
11 fourierdlem19.z . . . . 5 (𝜑𝑍𝐷)
1210, 11sseldi 3962 . . . 4 (𝜑𝑍 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)))
13 iocleub 41654 . . . 4 (((𝐴 + 𝑋) ∈ ℝ* ∧ (𝐵 + 𝑋) ∈ ℝ*𝑍 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋))) → 𝑍 ≤ (𝐵 + 𝑋))
144, 7, 12, 13syl3anc 1363 . . 3 (𝜑𝑍 ≤ (𝐵 + 𝑋))
1514adantr 481 . 2 ((𝜑𝑊 < 𝑍) → 𝑍 ≤ (𝐵 + 𝑋))
166adantr 481 . . . 4 ((𝜑𝑊 < 𝑍) → (𝐵 + 𝑋) ∈ ℝ)
17 iocssre 12804 . . . . . . . 8 (((𝐴 + 𝑋) ∈ ℝ* ∧ (𝐵 + 𝑋) ∈ ℝ) → ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ⊆ ℝ)
184, 6, 17syl2anc 584 . . . . . . 7 (𝜑 → ((𝐴 + 𝑋)(,](𝐵 + 𝑋)) ⊆ ℝ)
19 fourierdlem19.w . . . . . . . 8 (𝜑𝑊𝐷)
2010, 19sseldi 3962 . . . . . . 7 (𝜑𝑊 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋)))
2118, 20sseldd 3965 . . . . . 6 (𝜑𝑊 ∈ ℝ)
22 fourierdlem19.t . . . . . . 7 𝑇 = (𝐵𝐴)
235, 1resubcld 11056 . . . . . . 7 (𝜑 → (𝐵𝐴) ∈ ℝ)
2422, 23eqeltrid 2914 . . . . . 6 (𝜑𝑇 ∈ ℝ)
2521, 24readdcld 10658 . . . . 5 (𝜑 → (𝑊 + 𝑇) ∈ ℝ)
2625adantr 481 . . . 4 ((𝜑𝑊 < 𝑍) → (𝑊 + 𝑇) ∈ ℝ)
2718, 12sseldd 3965 . . . . 5 (𝜑𝑍 ∈ ℝ)
2827adantr 481 . . . 4 ((𝜑𝑊 < 𝑍) → 𝑍 ∈ ℝ)
2922eqcomi 2827 . . . . . . . . . . 11 (𝐵𝐴) = 𝑇
3029a1i 11 . . . . . . . . . 10 (𝜑 → (𝐵𝐴) = 𝑇)
315recnd 10657 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℂ)
321recnd 10657 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℂ)
3324recnd 10657 . . . . . . . . . . 11 (𝜑𝑇 ∈ ℂ)
3431, 32, 33subaddd 11003 . . . . . . . . . 10 (𝜑 → ((𝐵𝐴) = 𝑇 ↔ (𝐴 + 𝑇) = 𝐵))
3530, 34mpbid 233 . . . . . . . . 9 (𝜑 → (𝐴 + 𝑇) = 𝐵)
3635eqcomd 2824 . . . . . . . 8 (𝜑𝐵 = (𝐴 + 𝑇))
3736oveq1d 7160 . . . . . . 7 (𝜑 → (𝐵 + 𝑋) = ((𝐴 + 𝑇) + 𝑋))
382recnd 10657 . . . . . . . 8 (𝜑𝑋 ∈ ℂ)
3932, 33, 38add32d 10855 . . . . . . 7 (𝜑 → ((𝐴 + 𝑇) + 𝑋) = ((𝐴 + 𝑋) + 𝑇))
4037, 39eqtrd 2853 . . . . . 6 (𝜑 → (𝐵 + 𝑋) = ((𝐴 + 𝑋) + 𝑇))
41 iocgtlb 41653 . . . . . . . 8 (((𝐴 + 𝑋) ∈ ℝ* ∧ (𝐵 + 𝑋) ∈ ℝ*𝑊 ∈ ((𝐴 + 𝑋)(,](𝐵 + 𝑋))) → (𝐴 + 𝑋) < 𝑊)
424, 7, 20, 41syl3anc 1363 . . . . . . 7 (𝜑 → (𝐴 + 𝑋) < 𝑊)
433, 21, 24, 42ltadd1dd 11239 . . . . . 6 (𝜑 → ((𝐴 + 𝑋) + 𝑇) < (𝑊 + 𝑇))
4440, 43eqbrtrd 5079 . . . . 5 (𝜑 → (𝐵 + 𝑋) < (𝑊 + 𝑇))
4544adantr 481 . . . 4 ((𝜑𝑊 < 𝑍) → (𝐵 + 𝑋) < (𝑊 + 𝑇))
46 fourierdlem19.e . . . . . . . . . . . . 13 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
4746a1i 11 . . . . . . . . . . . 12 (𝜑𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))))
48 id 22 . . . . . . . . . . . . . 14 (𝑥 = 𝑊𝑥 = 𝑊)
49 oveq2 7153 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑊 → (𝐵𝑥) = (𝐵𝑊))
5049oveq1d 7160 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑊 → ((𝐵𝑥) / 𝑇) = ((𝐵𝑊) / 𝑇))
5150fveq2d 6667 . . . . . . . . . . . . . . 15 (𝑥 = 𝑊 → (⌊‘((𝐵𝑥) / 𝑇)) = (⌊‘((𝐵𝑊) / 𝑇)))
5251oveq1d 7160 . . . . . . . . . . . . . 14 (𝑥 = 𝑊 → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) = ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇))
5348, 52oveq12d 7163 . . . . . . . . . . . . 13 (𝑥 = 𝑊 → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = (𝑊 + ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇)))
5453adantl 482 . . . . . . . . . . . 12 ((𝜑𝑥 = 𝑊) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = (𝑊 + ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇)))
555, 21resubcld 11056 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐵𝑊) ∈ ℝ)
56 fourierdlem19.altb . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐴 < 𝐵)
571, 5posdifd 11215 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
5856, 57mpbid 233 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 < (𝐵𝐴))
5958, 22breqtrrdi 5099 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 < 𝑇)
6059gt0ne0d 11192 . . . . . . . . . . . . . . . . 17 (𝜑𝑇 ≠ 0)
6155, 24, 60redivcld 11456 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐵𝑊) / 𝑇) ∈ ℝ)
6261flcld 13156 . . . . . . . . . . . . . . 15 (𝜑 → (⌊‘((𝐵𝑊) / 𝑇)) ∈ ℤ)
6362zred 12075 . . . . . . . . . . . . . 14 (𝜑 → (⌊‘((𝐵𝑊) / 𝑇)) ∈ ℝ)
6463, 24remulcld 10659 . . . . . . . . . . . . 13 (𝜑 → ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇) ∈ ℝ)
6521, 64readdcld 10658 . . . . . . . . . . . 12 (𝜑 → (𝑊 + ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇)) ∈ ℝ)
6647, 54, 21, 65fvmptd 6767 . . . . . . . . . . 11 (𝜑 → (𝐸𝑊) = (𝑊 + ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇)))
6766, 65eqeltrd 2910 . . . . . . . . . 10 (𝜑 → (𝐸𝑊) ∈ ℝ)
6867recnd 10657 . . . . . . . . 9 (𝜑 → (𝐸𝑊) ∈ ℂ)
6968adantr 481 . . . . . . . 8 ((𝜑𝑊 < 𝑍) → (𝐸𝑊) ∈ ℂ)
7064recnd 10657 . . . . . . . . 9 (𝜑 → ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇) ∈ ℂ)
7170adantr 481 . . . . . . . 8 ((𝜑𝑊 < 𝑍) → ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇) ∈ ℂ)
7233adantr 481 . . . . . . . 8 ((𝜑𝑊 < 𝑍) → 𝑇 ∈ ℂ)
7369, 71, 72subsubd 11013 . . . . . . 7 ((𝜑𝑊 < 𝑍) → ((𝐸𝑊) − (((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇) − 𝑇)) = (((𝐸𝑊) − ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇)) + 𝑇))
7473eqcomd 2824 . . . . . 6 ((𝜑𝑊 < 𝑍) → (((𝐸𝑊) − ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇)) + 𝑇) = ((𝐸𝑊) − (((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇) − 𝑇)))
755, 27resubcld 11056 . . . . . . . . . . . 12 (𝜑 → (𝐵𝑍) ∈ ℝ)
7675, 24, 60redivcld 11456 . . . . . . . . . . 11 (𝜑 → ((𝐵𝑍) / 𝑇) ∈ ℝ)
7776flcld 13156 . . . . . . . . . 10 (𝜑 → (⌊‘((𝐵𝑍) / 𝑇)) ∈ ℤ)
7877zred 12075 . . . . . . . . 9 (𝜑 → (⌊‘((𝐵𝑍) / 𝑇)) ∈ ℝ)
7978adantr 481 . . . . . . . 8 ((𝜑𝑊 < 𝑍) → (⌊‘((𝐵𝑍) / 𝑇)) ∈ ℝ)
8024adantr 481 . . . . . . . 8 ((𝜑𝑊 < 𝑍) → 𝑇 ∈ ℝ)
8179, 80remulcld 10659 . . . . . . 7 ((𝜑𝑊 < 𝑍) → ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇) ∈ ℝ)
8263adantr 481 . . . . . . . . 9 ((𝜑𝑊 < 𝑍) → (⌊‘((𝐵𝑊) / 𝑇)) ∈ ℝ)
8382, 80remulcld 10659 . . . . . . . 8 ((𝜑𝑊 < 𝑍) → ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇) ∈ ℝ)
8483, 80resubcld 11056 . . . . . . 7 ((𝜑𝑊 < 𝑍) → (((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇) − 𝑇) ∈ ℝ)
8567adantr 481 . . . . . . 7 ((𝜑𝑊 < 𝑍) → (𝐸𝑊) ∈ ℝ)
8678, 24remulcld 10659 . . . . . . . . . . . 12 (𝜑 → ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇) ∈ ℝ)
8786recnd 10657 . . . . . . . . . . 11 (𝜑 → ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇) ∈ ℂ)
8887, 33pncand 10986 . . . . . . . . . 10 (𝜑 → ((((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇) + 𝑇) − 𝑇) = ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇))
8988eqcomd 2824 . . . . . . . . 9 (𝜑 → ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇) = ((((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇) + 𝑇) − 𝑇))
9089adantr 481 . . . . . . . 8 ((𝜑𝑊 < 𝑍) → ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇) = ((((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇) + 𝑇) − 𝑇))
9181, 80readdcld 10658 . . . . . . . . 9 ((𝜑𝑊 < 𝑍) → (((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇) + 𝑇) ∈ ℝ)
9278recnd 10657 . . . . . . . . . . . . 13 (𝜑 → (⌊‘((𝐵𝑍) / 𝑇)) ∈ ℂ)
9392, 33adddirp1d 10655 . . . . . . . . . . . 12 (𝜑 → (((⌊‘((𝐵𝑍) / 𝑇)) + 1) · 𝑇) = (((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇) + 𝑇))
9493eqcomd 2824 . . . . . . . . . . 11 (𝜑 → (((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇) + 𝑇) = (((⌊‘((𝐵𝑍) / 𝑇)) + 1) · 𝑇))
9594adantr 481 . . . . . . . . . 10 ((𝜑𝑊 < 𝑍) → (((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇) + 𝑇) = (((⌊‘((𝐵𝑍) / 𝑇)) + 1) · 𝑇))
96 1red 10630 . . . . . . . . . . . 12 ((𝜑𝑊 < 𝑍) → 1 ∈ ℝ)
9779, 96readdcld 10658 . . . . . . . . . . 11 ((𝜑𝑊 < 𝑍) → ((⌊‘((𝐵𝑍) / 𝑇)) + 1) ∈ ℝ)
98 0red 10632 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ℝ)
9998, 24, 59ltled 10776 . . . . . . . . . . . 12 (𝜑 → 0 ≤ 𝑇)
10099adantr 481 . . . . . . . . . . 11 ((𝜑𝑊 < 𝑍) → 0 ≤ 𝑇)
10185, 28resubcld 11056 . . . . . . . . . . . . . 14 ((𝜑𝑊 < 𝑍) → ((𝐸𝑊) − 𝑍) ∈ ℝ)
10221adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑊 < 𝑍) → 𝑊 ∈ ℝ)
10385, 102resubcld 11056 . . . . . . . . . . . . . 14 ((𝜑𝑊 < 𝑍) → ((𝐸𝑊) − 𝑊) ∈ ℝ)
10424, 59elrpd 12416 . . . . . . . . . . . . . . 15 (𝜑𝑇 ∈ ℝ+)
105104adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑊 < 𝑍) → 𝑇 ∈ ℝ+)
106 simpr 485 . . . . . . . . . . . . . . 15 ((𝜑𝑊 < 𝑍) → 𝑊 < 𝑍)
107102, 28, 85, 106ltsub2dd 11241 . . . . . . . . . . . . . 14 ((𝜑𝑊 < 𝑍) → ((𝐸𝑊) − 𝑍) < ((𝐸𝑊) − 𝑊))
108101, 103, 105, 107ltdiv1dd 12476 . . . . . . . . . . . . 13 ((𝜑𝑊 < 𝑍) → (((𝐸𝑊) − 𝑍) / 𝑇) < (((𝐸𝑊) − 𝑊) / 𝑇))
109 fourierdlem19.ezew . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐸𝑍) = (𝐸𝑊))
110 id 22 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑍𝑥 = 𝑍)
111 oveq2 7153 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = 𝑍 → (𝐵𝑥) = (𝐵𝑍))
112111oveq1d 7160 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑍 → ((𝐵𝑥) / 𝑇) = ((𝐵𝑍) / 𝑇))
113112fveq2d 6667 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑍 → (⌊‘((𝐵𝑥) / 𝑇)) = (⌊‘((𝐵𝑍) / 𝑇)))
114113oveq1d 7160 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑍 → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) = ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇))
115110, 114oveq12d 7163 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑍 → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = (𝑍 + ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇)))
116115adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 = 𝑍) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = (𝑍 + ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇)))
11727, 86readdcld 10658 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑍 + ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇)) ∈ ℝ)
11847, 116, 27, 117fvmptd 6767 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐸𝑍) = (𝑍 + ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇)))
119109, 118eqtr3d 2855 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐸𝑊) = (𝑍 + ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇)))
120119oveq1d 7160 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐸𝑊) − 𝑍) = ((𝑍 + ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇)) − 𝑍))
12127recnd 10657 . . . . . . . . . . . . . . . . . 18 (𝜑𝑍 ∈ ℂ)
122121, 87pncan2d 10987 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑍 + ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇)) − 𝑍) = ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇))
123120, 122eqtrd 2853 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐸𝑊) − 𝑍) = ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇))
124123oveq1d 7160 . . . . . . . . . . . . . . 15 (𝜑 → (((𝐸𝑊) − 𝑍) / 𝑇) = (((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇) / 𝑇))
12592, 33, 60divcan4d 11410 . . . . . . . . . . . . . . 15 (𝜑 → (((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇) / 𝑇) = (⌊‘((𝐵𝑍) / 𝑇)))
126124, 125eqtr2d 2854 . . . . . . . . . . . . . 14 (𝜑 → (⌊‘((𝐵𝑍) / 𝑇)) = (((𝐸𝑊) − 𝑍) / 𝑇))
127126adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑊 < 𝑍) → (⌊‘((𝐵𝑍) / 𝑇)) = (((𝐸𝑊) − 𝑍) / 𝑇))
12866oveq1d 7160 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐸𝑊) − 𝑊) = ((𝑊 + ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇)) − 𝑊))
129128oveq1d 7160 . . . . . . . . . . . . . . 15 (𝜑 → (((𝐸𝑊) − 𝑊) / 𝑇) = (((𝑊 + ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇)) − 𝑊) / 𝑇))
13021recnd 10657 . . . . . . . . . . . . . . . . 17 (𝜑𝑊 ∈ ℂ)
131130, 70pncan2d 10987 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑊 + ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇)) − 𝑊) = ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇))
132131oveq1d 7160 . . . . . . . . . . . . . . 15 (𝜑 → (((𝑊 + ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇)) − 𝑊) / 𝑇) = (((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇) / 𝑇))
13363recnd 10657 . . . . . . . . . . . . . . . 16 (𝜑 → (⌊‘((𝐵𝑊) / 𝑇)) ∈ ℂ)
134133, 33, 60divcan4d 11410 . . . . . . . . . . . . . . 15 (𝜑 → (((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇) / 𝑇) = (⌊‘((𝐵𝑊) / 𝑇)))
135129, 132, 1343eqtrrd 2858 . . . . . . . . . . . . . 14 (𝜑 → (⌊‘((𝐵𝑊) / 𝑇)) = (((𝐸𝑊) − 𝑊) / 𝑇))
136135adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑊 < 𝑍) → (⌊‘((𝐵𝑊) / 𝑇)) = (((𝐸𝑊) − 𝑊) / 𝑇))
137108, 127, 1363brtr4d 5089 . . . . . . . . . . . 12 ((𝜑𝑊 < 𝑍) → (⌊‘((𝐵𝑍) / 𝑇)) < (⌊‘((𝐵𝑊) / 𝑇)))
13877adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑊 < 𝑍) → (⌊‘((𝐵𝑍) / 𝑇)) ∈ ℤ)
13962adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑊 < 𝑍) → (⌊‘((𝐵𝑊) / 𝑇)) ∈ ℤ)
140 zltp1le 12020 . . . . . . . . . . . . 13 (((⌊‘((𝐵𝑍) / 𝑇)) ∈ ℤ ∧ (⌊‘((𝐵𝑊) / 𝑇)) ∈ ℤ) → ((⌊‘((𝐵𝑍) / 𝑇)) < (⌊‘((𝐵𝑊) / 𝑇)) ↔ ((⌊‘((𝐵𝑍) / 𝑇)) + 1) ≤ (⌊‘((𝐵𝑊) / 𝑇))))
141138, 139, 140syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑊 < 𝑍) → ((⌊‘((𝐵𝑍) / 𝑇)) < (⌊‘((𝐵𝑊) / 𝑇)) ↔ ((⌊‘((𝐵𝑍) / 𝑇)) + 1) ≤ (⌊‘((𝐵𝑊) / 𝑇))))
142137, 141mpbid 233 . . . . . . . . . . 11 ((𝜑𝑊 < 𝑍) → ((⌊‘((𝐵𝑍) / 𝑇)) + 1) ≤ (⌊‘((𝐵𝑊) / 𝑇)))
14397, 82, 80, 100, 142lemul1ad 11567 . . . . . . . . . 10 ((𝜑𝑊 < 𝑍) → (((⌊‘((𝐵𝑍) / 𝑇)) + 1) · 𝑇) ≤ ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇))
14495, 143eqbrtrd 5079 . . . . . . . . 9 ((𝜑𝑊 < 𝑍) → (((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇) + 𝑇) ≤ ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇))
14591, 83, 80, 144lesub1dd 11244 . . . . . . . 8 ((𝜑𝑊 < 𝑍) → ((((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇) + 𝑇) − 𝑇) ≤ (((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇) − 𝑇))
14690, 145eqbrtrd 5079 . . . . . . 7 ((𝜑𝑊 < 𝑍) → ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇) ≤ (((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇) − 𝑇))
14781, 84, 85, 146lesub2dd 11245 . . . . . 6 ((𝜑𝑊 < 𝑍) → ((𝐸𝑊) − (((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇) − 𝑇)) ≤ ((𝐸𝑊) − ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇)))
14874, 147eqbrtrd 5079 . . . . 5 ((𝜑𝑊 < 𝑍) → (((𝐸𝑊) − ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇)) + 𝑇) ≤ ((𝐸𝑊) − ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇)))
14966eqcomd 2824 . . . . . . . . 9 (𝜑 → (𝑊 + ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇)) = (𝐸𝑊))
15068, 70, 130subadd2d 11004 . . . . . . . . 9 (𝜑 → (((𝐸𝑊) − ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇)) = 𝑊 ↔ (𝑊 + ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇)) = (𝐸𝑊)))
151149, 150mpbird 258 . . . . . . . 8 (𝜑 → ((𝐸𝑊) − ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇)) = 𝑊)
152151eqcomd 2824 . . . . . . 7 (𝜑𝑊 = ((𝐸𝑊) − ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇)))
153152oveq1d 7160 . . . . . 6 (𝜑 → (𝑊 + 𝑇) = (((𝐸𝑊) − ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇)) + 𝑇))
154153adantr 481 . . . . 5 ((𝜑𝑊 < 𝑍) → (𝑊 + 𝑇) = (((𝐸𝑊) − ((⌊‘((𝐵𝑊) / 𝑇)) · 𝑇)) + 𝑇))
155118eqcomd 2824 . . . . . . . 8 (𝜑 → (𝑍 + ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇)) = (𝐸𝑍))
1561rexrd 10679 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ*)
157 iocssre 12804 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴(,]𝐵) ⊆ ℝ)
158156, 5, 157syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝐴(,]𝐵) ⊆ ℝ)
1591, 5, 56, 22, 46fourierdlem4 42273 . . . . . . . . . . . 12 (𝜑𝐸:ℝ⟶(𝐴(,]𝐵))
160159, 27ffvelrnd 6844 . . . . . . . . . . 11 (𝜑 → (𝐸𝑍) ∈ (𝐴(,]𝐵))
161158, 160sseldd 3965 . . . . . . . . . 10 (𝜑 → (𝐸𝑍) ∈ ℝ)
162161recnd 10657 . . . . . . . . 9 (𝜑 → (𝐸𝑍) ∈ ℂ)
163162, 87, 121subadd2d 11004 . . . . . . . 8 (𝜑 → (((𝐸𝑍) − ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇)) = 𝑍 ↔ (𝑍 + ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇)) = (𝐸𝑍)))
164155, 163mpbird 258 . . . . . . 7 (𝜑 → ((𝐸𝑍) − ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇)) = 𝑍)
165109oveq1d 7160 . . . . . . 7 (𝜑 → ((𝐸𝑍) − ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇)) = ((𝐸𝑊) − ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇)))
166164, 165eqtr3d 2855 . . . . . 6 (𝜑𝑍 = ((𝐸𝑊) − ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇)))
167166adantr 481 . . . . 5 ((𝜑𝑊 < 𝑍) → 𝑍 = ((𝐸𝑊) − ((⌊‘((𝐵𝑍) / 𝑇)) · 𝑇)))
168148, 154, 1673brtr4d 5089 . . . 4 ((𝜑𝑊 < 𝑍) → (𝑊 + 𝑇) ≤ 𝑍)
16916, 26, 28, 45, 168ltletrd 10788 . . 3 ((𝜑𝑊 < 𝑍) → (𝐵 + 𝑋) < 𝑍)
17016, 28ltnled 10775 . . 3 ((𝜑𝑊 < 𝑍) → ((𝐵 + 𝑋) < 𝑍 ↔ ¬ 𝑍 ≤ (𝐵 + 𝑋)))
171169, 170mpbid 233 . 2 ((𝜑𝑊 < 𝑍) → ¬ 𝑍 ≤ (𝐵 + 𝑋))
17215, 171pm2.65da 813 1 (𝜑 → ¬ 𝑊 < 𝑍)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  wrex 3136  {crab 3139  wss 3933   class class class wbr 5057  cmpt 5137  cfv 6348  (class class class)co 7145  cc 10523  cr 10524  0cc0 10525  1c1 10526   + caddc 10528   · cmul 10530  *cxr 10662   < clt 10663  cle 10664  cmin 10858   / cdiv 11285  cz 11969  +crp 12377  (,]cioc 12727  cfl 13148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-sup 8894  df-inf 8895  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-ioc 12731  df-fl 13150
This theorem is referenced by:  fourierdlem51  42319
  Copyright terms: Public domain W3C validator