Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem25 Structured version   Visualization version   GIF version

Theorem fourierdlem25 42410
Description: If 𝐶 is not in the range of the partition, then it is in an open interval induced by the partition. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem25.m (𝜑𝑀 ∈ ℕ)
fourierdlem25.qf (𝜑𝑄:(0...𝑀)⟶ℝ)
fourierdlem25.cel (𝜑𝐶 ∈ ((𝑄‘0)[,](𝑄𝑀)))
fourierdlem25.cnel (𝜑 → ¬ 𝐶 ∈ ran 𝑄)
fourierdlem25.i 𝐼 = sup({𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}, ℝ, < )
Assertion
Ref Expression
fourierdlem25 (𝜑 → ∃𝑗 ∈ (0..^𝑀)𝐶 ∈ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1))))
Distinct variable groups:   𝐶,𝑘   𝐶,𝑗   𝑗,𝐼   𝑘,𝐼   𝑘,𝑀   𝑗,𝑀   𝑄,𝑘   𝑄,𝑗
Allowed substitution hints:   𝜑(𝑗,𝑘)

Proof of Theorem fourierdlem25
Dummy variables 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem25.i . . 3 𝐼 = sup({𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}, ℝ, < )
2 ssrab2 4056 . . . 4 {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ⊆ (0..^𝑀)
3 ltso 10715 . . . . . 6 < Or ℝ
43a1i 11 . . . . 5 (𝜑 → < Or ℝ)
5 fzofi 13336 . . . . . . 7 (0..^𝑀) ∈ Fin
6 ssfi 8732 . . . . . . 7 (((0..^𝑀) ∈ Fin ∧ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ⊆ (0..^𝑀)) → {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ∈ Fin)
75, 2, 6mp2an 690 . . . . . 6 {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ∈ Fin
87a1i 11 . . . . 5 (𝜑 → {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ∈ Fin)
9 0zd 11987 . . . . . . . 8 (𝜑 → 0 ∈ ℤ)
10 fourierdlem25.m . . . . . . . . 9 (𝜑𝑀 ∈ ℕ)
1110nnzd 12080 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
1210nngt0d 11680 . . . . . . . 8 (𝜑 → 0 < 𝑀)
13 fzolb 13038 . . . . . . . 8 (0 ∈ (0..^𝑀) ↔ (0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 0 < 𝑀))
149, 11, 12, 13syl3anbrc 1339 . . . . . . 7 (𝜑 → 0 ∈ (0..^𝑀))
15 fourierdlem25.qf . . . . . . . . 9 (𝜑𝑄:(0...𝑀)⟶ℝ)
16 elfzofz 13047 . . . . . . . . . 10 (0 ∈ (0..^𝑀) → 0 ∈ (0...𝑀))
1714, 16syl 17 . . . . . . . . 9 (𝜑 → 0 ∈ (0...𝑀))
1815, 17ffvelrnd 6847 . . . . . . . 8 (𝜑 → (𝑄‘0) ∈ ℝ)
1910nnnn0d 11949 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℕ0)
20 nn0uz 12274 . . . . . . . . . . . . 13 0 = (ℤ‘0)
2119, 20eleqtrdi 2923 . . . . . . . . . . . 12 (𝜑𝑀 ∈ (ℤ‘0))
22 eluzfz2 12909 . . . . . . . . . . . 12 (𝑀 ∈ (ℤ‘0) → 𝑀 ∈ (0...𝑀))
2321, 22syl 17 . . . . . . . . . . 11 (𝜑𝑀 ∈ (0...𝑀))
2415, 23ffvelrnd 6847 . . . . . . . . . 10 (𝜑 → (𝑄𝑀) ∈ ℝ)
2518, 24iccssred 41772 . . . . . . . . 9 (𝜑 → ((𝑄‘0)[,](𝑄𝑀)) ⊆ ℝ)
26 fourierdlem25.cel . . . . . . . . 9 (𝜑𝐶 ∈ ((𝑄‘0)[,](𝑄𝑀)))
2725, 26sseldd 3968 . . . . . . . 8 (𝜑𝐶 ∈ ℝ)
2818rexrd 10685 . . . . . . . . 9 (𝜑 → (𝑄‘0) ∈ ℝ*)
2924rexrd 10685 . . . . . . . . 9 (𝜑 → (𝑄𝑀) ∈ ℝ*)
30 iccgelb 12787 . . . . . . . . 9 (((𝑄‘0) ∈ ℝ* ∧ (𝑄𝑀) ∈ ℝ*𝐶 ∈ ((𝑄‘0)[,](𝑄𝑀))) → (𝑄‘0) ≤ 𝐶)
3128, 29, 26, 30syl3anc 1367 . . . . . . . 8 (𝜑 → (𝑄‘0) ≤ 𝐶)
32 fourierdlem25.cnel . . . . . . . . . 10 (𝜑 → ¬ 𝐶 ∈ ran 𝑄)
33 simpr 487 . . . . . . . . . . 11 ((𝜑𝐶 = (𝑄‘0)) → 𝐶 = (𝑄‘0))
3415ffnd 6510 . . . . . . . . . . . . 13 (𝜑𝑄 Fn (0...𝑀))
3534adantr 483 . . . . . . . . . . . 12 ((𝜑𝐶 = (𝑄‘0)) → 𝑄 Fn (0...𝑀))
3617adantr 483 . . . . . . . . . . . 12 ((𝜑𝐶 = (𝑄‘0)) → 0 ∈ (0...𝑀))
37 fnfvelrn 6843 . . . . . . . . . . . 12 ((𝑄 Fn (0...𝑀) ∧ 0 ∈ (0...𝑀)) → (𝑄‘0) ∈ ran 𝑄)
3835, 36, 37syl2anc 586 . . . . . . . . . . 11 ((𝜑𝐶 = (𝑄‘0)) → (𝑄‘0) ∈ ran 𝑄)
3933, 38eqeltrd 2913 . . . . . . . . . 10 ((𝜑𝐶 = (𝑄‘0)) → 𝐶 ∈ ran 𝑄)
4032, 39mtand 814 . . . . . . . . 9 (𝜑 → ¬ 𝐶 = (𝑄‘0))
4140neqned 3023 . . . . . . . 8 (𝜑𝐶 ≠ (𝑄‘0))
4218, 27, 31, 41leneltd 10788 . . . . . . 7 (𝜑 → (𝑄‘0) < 𝐶)
43 fveq2 6665 . . . . . . . . 9 (𝑘 = 0 → (𝑄𝑘) = (𝑄‘0))
4443breq1d 5069 . . . . . . . 8 (𝑘 = 0 → ((𝑄𝑘) < 𝐶 ↔ (𝑄‘0) < 𝐶))
4544elrab 3680 . . . . . . 7 (0 ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ↔ (0 ∈ (0..^𝑀) ∧ (𝑄‘0) < 𝐶))
4614, 42, 45sylanbrc 585 . . . . . 6 (𝜑 → 0 ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶})
4746ne0d 4301 . . . . 5 (𝜑 → {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ≠ ∅)
48 fzossfz 13050 . . . . . . . 8 (0..^𝑀) ⊆ (0...𝑀)
49 fzssz 12903 . . . . . . . . 9 (0...𝑀) ⊆ ℤ
50 zssre 11982 . . . . . . . . 9 ℤ ⊆ ℝ
5149, 50sstri 3976 . . . . . . . 8 (0...𝑀) ⊆ ℝ
5248, 51sstri 3976 . . . . . . 7 (0..^𝑀) ⊆ ℝ
532, 52sstri 3976 . . . . . 6 {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ⊆ ℝ
5453a1i 11 . . . . 5 (𝜑 → {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ⊆ ℝ)
55 fisupcl 8927 . . . . 5 (( < Or ℝ ∧ ({𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ∈ Fin ∧ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ≠ ∅ ∧ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ⊆ ℝ)) → sup({𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}, ℝ, < ) ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶})
564, 8, 47, 54, 55syl13anc 1368 . . . 4 (𝜑 → sup({𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}, ℝ, < ) ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶})
572, 56sseldi 3965 . . 3 (𝜑 → sup({𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}, ℝ, < ) ∈ (0..^𝑀))
581, 57eqeltrid 2917 . 2 (𝜑𝐼 ∈ (0..^𝑀))
5948, 58sseldi 3965 . . . . 5 (𝜑𝐼 ∈ (0...𝑀))
6015, 59ffvelrnd 6847 . . . 4 (𝜑 → (𝑄𝐼) ∈ ℝ)
6160rexrd 10685 . . 3 (𝜑 → (𝑄𝐼) ∈ ℝ*)
62 fzofzp1 13128 . . . . . 6 (𝐼 ∈ (0..^𝑀) → (𝐼 + 1) ∈ (0...𝑀))
6358, 62syl 17 . . . . 5 (𝜑 → (𝐼 + 1) ∈ (0...𝑀))
6415, 63ffvelrnd 6847 . . . 4 (𝜑 → (𝑄‘(𝐼 + 1)) ∈ ℝ)
6564rexrd 10685 . . 3 (𝜑 → (𝑄‘(𝐼 + 1)) ∈ ℝ*)
661, 56eqeltrid 2917 . . . . 5 (𝜑𝐼 ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶})
67 fveq2 6665 . . . . . . 7 (𝑘 = 𝐼 → (𝑄𝑘) = (𝑄𝐼))
6867breq1d 5069 . . . . . 6 (𝑘 = 𝐼 → ((𝑄𝑘) < 𝐶 ↔ (𝑄𝐼) < 𝐶))
6968elrab 3680 . . . . 5 (𝐼 ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ↔ (𝐼 ∈ (0..^𝑀) ∧ (𝑄𝐼) < 𝐶))
7066, 69sylib 220 . . . 4 (𝜑 → (𝐼 ∈ (0..^𝑀) ∧ (𝑄𝐼) < 𝐶))
7170simprd 498 . . 3 (𝜑 → (𝑄𝐼) < 𝐶)
7252, 58sseldi 3965 . . . . . . . . 9 (𝜑𝐼 ∈ ℝ)
73 ltp1 11474 . . . . . . . . . 10 (𝐼 ∈ ℝ → 𝐼 < (𝐼 + 1))
74 id 22 . . . . . . . . . . 11 (𝐼 ∈ ℝ → 𝐼 ∈ ℝ)
75 peano2re 10807 . . . . . . . . . . 11 (𝐼 ∈ ℝ → (𝐼 + 1) ∈ ℝ)
7674, 75ltnled 10781 . . . . . . . . . 10 (𝐼 ∈ ℝ → (𝐼 < (𝐼 + 1) ↔ ¬ (𝐼 + 1) ≤ 𝐼))
7773, 76mpbid 234 . . . . . . . . 9 (𝐼 ∈ ℝ → ¬ (𝐼 + 1) ≤ 𝐼)
7872, 77syl 17 . . . . . . . 8 (𝜑 → ¬ (𝐼 + 1) ≤ 𝐼)
7948, 49sstri 3976 . . . . . . . . . . . 12 (0..^𝑀) ⊆ ℤ
802, 79sstri 3976 . . . . . . . . . . 11 {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ⊆ ℤ
8180a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ⊆ ℤ)
82 elrabi 3675 . . . . . . . . . . . . . . 15 ( ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} → ∈ (0..^𝑀))
83 elfzo0le 13075 . . . . . . . . . . . . . . 15 ( ∈ (0..^𝑀) → 𝑀)
8482, 83syl 17 . . . . . . . . . . . . . 14 ( ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} → 𝑀)
8584adantl 484 . . . . . . . . . . . . 13 ((𝜑 ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}) → 𝑀)
8685ralrimiva 3182 . . . . . . . . . . . 12 (𝜑 → ∀ ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}𝑀)
87 breq2 5063 . . . . . . . . . . . . . 14 (𝑚 = 𝑀 → (𝑚𝑀))
8887ralbidv 3197 . . . . . . . . . . . . 13 (𝑚 = 𝑀 → (∀ ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}𝑚 ↔ ∀ ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}𝑀))
8988rspcev 3623 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ ∀ ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}𝑀) → ∃𝑚 ∈ ℤ ∀ ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}𝑚)
9011, 86, 89syl2anc 586 . . . . . . . . . . 11 (𝜑 → ∃𝑚 ∈ ℤ ∀ ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}𝑚)
9190adantr 483 . . . . . . . . . 10 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → ∃𝑚 ∈ ℤ ∀ ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}𝑚)
92 elfzuz 12898 . . . . . . . . . . . . . 14 ((𝐼 + 1) ∈ (0...𝑀) → (𝐼 + 1) ∈ (ℤ‘0))
9363, 92syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝐼 + 1) ∈ (ℤ‘0))
9493adantr 483 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → (𝐼 + 1) ∈ (ℤ‘0))
9511adantr 483 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → 𝑀 ∈ ℤ)
9651, 63sseldi 3965 . . . . . . . . . . . . . 14 (𝜑 → (𝐼 + 1) ∈ ℝ)
9796adantr 483 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → (𝐼 + 1) ∈ ℝ)
9895zred 12081 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → 𝑀 ∈ ℝ)
99 elfzle2 12905 . . . . . . . . . . . . . . 15 ((𝐼 + 1) ∈ (0...𝑀) → (𝐼 + 1) ≤ 𝑀)
10063, 99syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝐼 + 1) ≤ 𝑀)
101100adantr 483 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → (𝐼 + 1) ≤ 𝑀)
102 simpr 487 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → (𝑄‘(𝐼 + 1)) < 𝐶)
10364adantr 483 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → (𝑄‘(𝐼 + 1)) ∈ ℝ)
10427adantr 483 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → 𝐶 ∈ ℝ)
105103, 104ltnled 10781 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → ((𝑄‘(𝐼 + 1)) < 𝐶 ↔ ¬ 𝐶 ≤ (𝑄‘(𝐼 + 1))))
106102, 105mpbid 234 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → ¬ 𝐶 ≤ (𝑄‘(𝐼 + 1)))
107 iccleub 12786 . . . . . . . . . . . . . . . . . . 19 (((𝑄‘0) ∈ ℝ* ∧ (𝑄𝑀) ∈ ℝ*𝐶 ∈ ((𝑄‘0)[,](𝑄𝑀))) → 𝐶 ≤ (𝑄𝑀))
10828, 29, 26, 107syl3anc 1367 . . . . . . . . . . . . . . . . . 18 (𝜑𝐶 ≤ (𝑄𝑀))
109108adantr 483 . . . . . . . . . . . . . . . . 17 ((𝜑𝑀 = (𝐼 + 1)) → 𝐶 ≤ (𝑄𝑀))
110 fveq2 6665 . . . . . . . . . . . . . . . . . 18 (𝑀 = (𝐼 + 1) → (𝑄𝑀) = (𝑄‘(𝐼 + 1)))
111110adantl 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑀 = (𝐼 + 1)) → (𝑄𝑀) = (𝑄‘(𝐼 + 1)))
112109, 111breqtrd 5085 . . . . . . . . . . . . . . . 16 ((𝜑𝑀 = (𝐼 + 1)) → 𝐶 ≤ (𝑄‘(𝐼 + 1)))
113112adantlr 713 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) ∧ 𝑀 = (𝐼 + 1)) → 𝐶 ≤ (𝑄‘(𝐼 + 1)))
114106, 113mtand 814 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → ¬ 𝑀 = (𝐼 + 1))
115114neqned 3023 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → 𝑀 ≠ (𝐼 + 1))
11697, 98, 101, 115leneltd 10788 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → (𝐼 + 1) < 𝑀)
117 elfzo2 13035 . . . . . . . . . . . 12 ((𝐼 + 1) ∈ (0..^𝑀) ↔ ((𝐼 + 1) ∈ (ℤ‘0) ∧ 𝑀 ∈ ℤ ∧ (𝐼 + 1) < 𝑀))
11894, 95, 116, 117syl3anbrc 1339 . . . . . . . . . . 11 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → (𝐼 + 1) ∈ (0..^𝑀))
119 fveq2 6665 . . . . . . . . . . . . 13 (𝑘 = (𝐼 + 1) → (𝑄𝑘) = (𝑄‘(𝐼 + 1)))
120119breq1d 5069 . . . . . . . . . . . 12 (𝑘 = (𝐼 + 1) → ((𝑄𝑘) < 𝐶 ↔ (𝑄‘(𝐼 + 1)) < 𝐶))
121120elrab 3680 . . . . . . . . . . 11 ((𝐼 + 1) ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ↔ ((𝐼 + 1) ∈ (0..^𝑀) ∧ (𝑄‘(𝐼 + 1)) < 𝐶))
122118, 102, 121sylanbrc 585 . . . . . . . . . 10 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → (𝐼 + 1) ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶})
123 suprzub 12333 . . . . . . . . . 10 (({𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶} ⊆ ℤ ∧ ∃𝑚 ∈ ℤ ∀ ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}𝑚 ∧ (𝐼 + 1) ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}) → (𝐼 + 1) ≤ sup({𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}, ℝ, < ))
12481, 91, 122, 123syl3anc 1367 . . . . . . . . 9 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → (𝐼 + 1) ≤ sup({𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝐶}, ℝ, < ))
125124, 1breqtrrdi 5101 . . . . . . . 8 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < 𝐶) → (𝐼 + 1) ≤ 𝐼)
12678, 125mtand 814 . . . . . . 7 (𝜑 → ¬ (𝑄‘(𝐼 + 1)) < 𝐶)
127 eqcom 2828 . . . . . . . . . . 11 ((𝑄‘(𝐼 + 1)) = 𝐶𝐶 = (𝑄‘(𝐼 + 1)))
128127biimpi 218 . . . . . . . . . 10 ((𝑄‘(𝐼 + 1)) = 𝐶𝐶 = (𝑄‘(𝐼 + 1)))
129128adantl 484 . . . . . . . . 9 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) = 𝐶) → 𝐶 = (𝑄‘(𝐼 + 1)))
13034adantr 483 . . . . . . . . . 10 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) = 𝐶) → 𝑄 Fn (0...𝑀))
13163adantr 483 . . . . . . . . . 10 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) = 𝐶) → (𝐼 + 1) ∈ (0...𝑀))
132 fnfvelrn 6843 . . . . . . . . . 10 ((𝑄 Fn (0...𝑀) ∧ (𝐼 + 1) ∈ (0...𝑀)) → (𝑄‘(𝐼 + 1)) ∈ ran 𝑄)
133130, 131, 132syl2anc 586 . . . . . . . . 9 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) = 𝐶) → (𝑄‘(𝐼 + 1)) ∈ ran 𝑄)
134129, 133eqeltrd 2913 . . . . . . . 8 ((𝜑 ∧ (𝑄‘(𝐼 + 1)) = 𝐶) → 𝐶 ∈ ran 𝑄)
13532, 134mtand 814 . . . . . . 7 (𝜑 → ¬ (𝑄‘(𝐼 + 1)) = 𝐶)
136126, 135jca 514 . . . . . 6 (𝜑 → (¬ (𝑄‘(𝐼 + 1)) < 𝐶 ∧ ¬ (𝑄‘(𝐼 + 1)) = 𝐶))
137 pm4.56 985 . . . . . 6 ((¬ (𝑄‘(𝐼 + 1)) < 𝐶 ∧ ¬ (𝑄‘(𝐼 + 1)) = 𝐶) ↔ ¬ ((𝑄‘(𝐼 + 1)) < 𝐶 ∨ (𝑄‘(𝐼 + 1)) = 𝐶))
138136, 137sylib 220 . . . . 5 (𝜑 → ¬ ((𝑄‘(𝐼 + 1)) < 𝐶 ∨ (𝑄‘(𝐼 + 1)) = 𝐶))
13964, 27leloed 10777 . . . . 5 (𝜑 → ((𝑄‘(𝐼 + 1)) ≤ 𝐶 ↔ ((𝑄‘(𝐼 + 1)) < 𝐶 ∨ (𝑄‘(𝐼 + 1)) = 𝐶)))
140138, 139mtbird 327 . . . 4 (𝜑 → ¬ (𝑄‘(𝐼 + 1)) ≤ 𝐶)
14127, 64ltnled 10781 . . . 4 (𝜑 → (𝐶 < (𝑄‘(𝐼 + 1)) ↔ ¬ (𝑄‘(𝐼 + 1)) ≤ 𝐶))
142140, 141mpbird 259 . . 3 (𝜑𝐶 < (𝑄‘(𝐼 + 1)))
14361, 65, 27, 71, 142eliood 41765 . 2 (𝜑𝐶 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))))
144 fveq2 6665 . . . . 5 (𝑗 = 𝐼 → (𝑄𝑗) = (𝑄𝐼))
145 oveq1 7157 . . . . . 6 (𝑗 = 𝐼 → (𝑗 + 1) = (𝐼 + 1))
146145fveq2d 6669 . . . . 5 (𝑗 = 𝐼 → (𝑄‘(𝑗 + 1)) = (𝑄‘(𝐼 + 1)))
147144, 146oveq12d 7168 . . . 4 (𝑗 = 𝐼 → ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1))) = ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))))
148147eleq2d 2898 . . 3 (𝑗 = 𝐼 → (𝐶 ∈ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1))) ↔ 𝐶 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))))
149148rspcev 3623 . 2 ((𝐼 ∈ (0..^𝑀) ∧ 𝐶 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → ∃𝑗 ∈ (0..^𝑀)𝐶 ∈ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1))))
15058, 143, 149syl2anc 586 1 (𝜑 → ∃𝑗 ∈ (0..^𝑀)𝐶 ∈ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wo 843   = wceq 1533  wcel 2110  wne 3016  wral 3138  wrex 3139  {crab 3142  wss 3936  c0 4291   class class class wbr 5059   Or wor 5468  ran crn 5551   Fn wfn 6345  wf 6346  cfv 6350  (class class class)co 7150  Fincfn 8503  supcsup 8898  cr 10530  0cc0 10531  1c1 10532   + caddc 10534  *cxr 10668   < clt 10669  cle 10670  cn 11632  0cn0 11891  cz 11975  cuz 12237  (,)cioo 12732  [,]cicc 12735  ...cfz 12886  ..^cfzo 13027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11892  df-z 11976  df-uz 12238  df-ioo 12736  df-icc 12739  df-fz 12887  df-fzo 13028
This theorem is referenced by:  fourierdlem41  42426  fourierdlem48  42432  fourierdlem49  42433  fourierdlem70  42454  fourierdlem71  42455  fourierdlem103  42487  fourierdlem104  42488
  Copyright terms: Public domain W3C validator