Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem26 Structured version   Visualization version   GIF version

Theorem fourierdlem26 42425
Description: Periodic image of a point 𝑌 that's in the period that begins with the point 𝑋. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem26.1 (𝜑𝐴 ∈ ℝ)
fourierdlem26.2 (𝜑𝐵 ∈ ℝ)
fourierdlem26.3 (𝜑𝐴 < 𝐵)
fourierdlem26.4 𝑇 = (𝐵𝐴)
fourierdlem26.5 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
fourierdlem26.6 (𝜑𝑋 ∈ ℝ)
fourierdlem26.7 (𝜑 → (𝐸𝑋) = 𝐵)
fourierdlem26.8 (𝜑𝑌 ∈ (𝑋(,](𝑋 + 𝑇)))
Assertion
Ref Expression
fourierdlem26 (𝜑 → (𝐸𝑌) = (𝐴 + (𝑌𝑋)))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑇   𝑥,𝑋   𝑥,𝑌   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐸(𝑥)

Proof of Theorem fourierdlem26
StepHypRef Expression
1 fourierdlem26.5 . . . 4 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
21a1i 11 . . 3 (𝜑𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))))
3 simpr 487 . . . 4 ((𝜑𝑥 = 𝑌) → 𝑥 = 𝑌)
43oveq2d 7174 . . . . . . 7 ((𝜑𝑥 = 𝑌) → (𝐵𝑥) = (𝐵𝑌))
54oveq1d 7173 . . . . . 6 ((𝜑𝑥 = 𝑌) → ((𝐵𝑥) / 𝑇) = ((𝐵𝑌) / 𝑇))
65fveq2d 6676 . . . . 5 ((𝜑𝑥 = 𝑌) → (⌊‘((𝐵𝑥) / 𝑇)) = (⌊‘((𝐵𝑌) / 𝑇)))
76oveq1d 7173 . . . 4 ((𝜑𝑥 = 𝑌) → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) = ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇))
83, 7oveq12d 7176 . . 3 ((𝜑𝑥 = 𝑌) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = (𝑌 + ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇)))
9 fourierdlem26.8 . . . . 5 (𝜑𝑌 ∈ (𝑋(,](𝑋 + 𝑇)))
10 fourierdlem26.6 . . . . . . 7 (𝜑𝑋 ∈ ℝ)
1110rexrd 10693 . . . . . 6 (𝜑𝑋 ∈ ℝ*)
12 fourierdlem26.4 . . . . . . . 8 𝑇 = (𝐵𝐴)
13 fourierdlem26.2 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ)
14 fourierdlem26.1 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
1513, 14resubcld 11070 . . . . . . . 8 (𝜑 → (𝐵𝐴) ∈ ℝ)
1612, 15eqeltrid 2919 . . . . . . 7 (𝜑𝑇 ∈ ℝ)
1710, 16readdcld 10672 . . . . . 6 (𝜑 → (𝑋 + 𝑇) ∈ ℝ)
18 elioc2 12802 . . . . . 6 ((𝑋 ∈ ℝ* ∧ (𝑋 + 𝑇) ∈ ℝ) → (𝑌 ∈ (𝑋(,](𝑋 + 𝑇)) ↔ (𝑌 ∈ ℝ ∧ 𝑋 < 𝑌𝑌 ≤ (𝑋 + 𝑇))))
1911, 17, 18syl2anc 586 . . . . 5 (𝜑 → (𝑌 ∈ (𝑋(,](𝑋 + 𝑇)) ↔ (𝑌 ∈ ℝ ∧ 𝑋 < 𝑌𝑌 ≤ (𝑋 + 𝑇))))
209, 19mpbid 234 . . . 4 (𝜑 → (𝑌 ∈ ℝ ∧ 𝑋 < 𝑌𝑌 ≤ (𝑋 + 𝑇)))
2120simp1d 1138 . . 3 (𝜑𝑌 ∈ ℝ)
2213, 21resubcld 11070 . . . . . . . 8 (𝜑 → (𝐵𝑌) ∈ ℝ)
23 fourierdlem26.3 . . . . . . . . . . 11 (𝜑𝐴 < 𝐵)
2414, 13posdifd 11229 . . . . . . . . . . 11 (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
2523, 24mpbid 234 . . . . . . . . . 10 (𝜑 → 0 < (𝐵𝐴))
2625, 12breqtrrdi 5110 . . . . . . . . 9 (𝜑 → 0 < 𝑇)
2726gt0ne0d 11206 . . . . . . . 8 (𝜑𝑇 ≠ 0)
2822, 16, 27redivcld 11470 . . . . . . 7 (𝜑 → ((𝐵𝑌) / 𝑇) ∈ ℝ)
2928flcld 13171 . . . . . 6 (𝜑 → (⌊‘((𝐵𝑌) / 𝑇)) ∈ ℤ)
3029zred 12090 . . . . 5 (𝜑 → (⌊‘((𝐵𝑌) / 𝑇)) ∈ ℝ)
3130, 16remulcld 10673 . . . 4 (𝜑 → ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇) ∈ ℝ)
3221, 31readdcld 10672 . . 3 (𝜑 → (𝑌 + ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇)) ∈ ℝ)
332, 8, 21, 32fvmptd 6777 . 2 (𝜑 → (𝐸𝑌) = (𝑌 + ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇)))
3410recnd 10671 . . . . . . . . . . . 12 (𝜑𝑋 ∈ ℂ)
3521recnd 10671 . . . . . . . . . . . 12 (𝜑𝑌 ∈ ℂ)
3634, 35pncan3d 11002 . . . . . . . . . . 11 (𝜑 → (𝑋 + (𝑌𝑋)) = 𝑌)
3736eqcomd 2829 . . . . . . . . . 10 (𝜑𝑌 = (𝑋 + (𝑌𝑋)))
3837oveq2d 7174 . . . . . . . . 9 (𝜑 → (𝐵𝑌) = (𝐵 − (𝑋 + (𝑌𝑋))))
3913recnd 10671 . . . . . . . . . 10 (𝜑𝐵 ∈ ℂ)
4035, 34subcld 10999 . . . . . . . . . 10 (𝜑 → (𝑌𝑋) ∈ ℂ)
4139, 34, 40subsub4d 11030 . . . . . . . . 9 (𝜑 → ((𝐵𝑋) − (𝑌𝑋)) = (𝐵 − (𝑋 + (𝑌𝑋))))
4238, 41eqtr4d 2861 . . . . . . . 8 (𝜑 → (𝐵𝑌) = ((𝐵𝑋) − (𝑌𝑋)))
4342oveq1d 7173 . . . . . . 7 (𝜑 → ((𝐵𝑌) / 𝑇) = (((𝐵𝑋) − (𝑌𝑋)) / 𝑇))
4413, 10resubcld 11070 . . . . . . . . 9 (𝜑 → (𝐵𝑋) ∈ ℝ)
4544recnd 10671 . . . . . . . 8 (𝜑 → (𝐵𝑋) ∈ ℂ)
4616recnd 10671 . . . . . . . 8 (𝜑𝑇 ∈ ℂ)
4745, 40, 46, 27divsubdird 11457 . . . . . . 7 (𝜑 → (((𝐵𝑋) − (𝑌𝑋)) / 𝑇) = (((𝐵𝑋) / 𝑇) − ((𝑌𝑋) / 𝑇)))
4840, 46, 27divnegd 11431 . . . . . . . . . 10 (𝜑 → -((𝑌𝑋) / 𝑇) = (-(𝑌𝑋) / 𝑇))
4935, 34negsubdi2d 11015 . . . . . . . . . . 11 (𝜑 → -(𝑌𝑋) = (𝑋𝑌))
5049oveq1d 7173 . . . . . . . . . 10 (𝜑 → (-(𝑌𝑋) / 𝑇) = ((𝑋𝑌) / 𝑇))
5148, 50eqtrd 2858 . . . . . . . . 9 (𝜑 → -((𝑌𝑋) / 𝑇) = ((𝑋𝑌) / 𝑇))
5251oveq2d 7174 . . . . . . . 8 (𝜑 → (((𝐵𝑋) / 𝑇) + -((𝑌𝑋) / 𝑇)) = (((𝐵𝑋) / 𝑇) + ((𝑋𝑌) / 𝑇)))
5344, 16, 27redivcld 11470 . . . . . . . . . 10 (𝜑 → ((𝐵𝑋) / 𝑇) ∈ ℝ)
5453recnd 10671 . . . . . . . . 9 (𝜑 → ((𝐵𝑋) / 𝑇) ∈ ℂ)
5540, 46, 27divcld 11418 . . . . . . . . 9 (𝜑 → ((𝑌𝑋) / 𝑇) ∈ ℂ)
5654, 55negsubd 11005 . . . . . . . 8 (𝜑 → (((𝐵𝑋) / 𝑇) + -((𝑌𝑋) / 𝑇)) = (((𝐵𝑋) / 𝑇) − ((𝑌𝑋) / 𝑇)))
57 1cnd 10638 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℂ)
5854, 57npcand 11003 . . . . . . . . . . 11 (𝜑 → ((((𝐵𝑋) / 𝑇) − 1) + 1) = ((𝐵𝑋) / 𝑇))
5958eqcomd 2829 . . . . . . . . . 10 (𝜑 → ((𝐵𝑋) / 𝑇) = ((((𝐵𝑋) / 𝑇) − 1) + 1))
6059oveq1d 7173 . . . . . . . . 9 (𝜑 → (((𝐵𝑋) / 𝑇) + ((𝑋𝑌) / 𝑇)) = (((((𝐵𝑋) / 𝑇) − 1) + 1) + ((𝑋𝑌) / 𝑇)))
6154, 57subcld 10999 . . . . . . . . . 10 (𝜑 → (((𝐵𝑋) / 𝑇) − 1) ∈ ℂ)
6234, 35subcld 10999 . . . . . . . . . . 11 (𝜑 → (𝑋𝑌) ∈ ℂ)
6362, 46, 27divcld 11418 . . . . . . . . . 10 (𝜑 → ((𝑋𝑌) / 𝑇) ∈ ℂ)
6461, 57, 63addassd 10665 . . . . . . . . 9 (𝜑 → (((((𝐵𝑋) / 𝑇) − 1) + 1) + ((𝑋𝑌) / 𝑇)) = ((((𝐵𝑋) / 𝑇) − 1) + (1 + ((𝑋𝑌) / 𝑇))))
6560, 64eqtrd 2858 . . . . . . . 8 (𝜑 → (((𝐵𝑋) / 𝑇) + ((𝑋𝑌) / 𝑇)) = ((((𝐵𝑋) / 𝑇) − 1) + (1 + ((𝑋𝑌) / 𝑇))))
6652, 56, 653eqtr3d 2866 . . . . . . 7 (𝜑 → (((𝐵𝑋) / 𝑇) − ((𝑌𝑋) / 𝑇)) = ((((𝐵𝑋) / 𝑇) − 1) + (1 + ((𝑋𝑌) / 𝑇))))
6743, 47, 663eqtrd 2862 . . . . . 6 (𝜑 → ((𝐵𝑌) / 𝑇) = ((((𝐵𝑋) / 𝑇) − 1) + (1 + ((𝑋𝑌) / 𝑇))))
6867fveq2d 6676 . . . . 5 (𝜑 → (⌊‘((𝐵𝑌) / 𝑇)) = (⌊‘((((𝐵𝑋) / 𝑇) − 1) + (1 + ((𝑋𝑌) / 𝑇)))))
6910, 21resubcld 11070 . . . . . . . . 9 (𝜑 → (𝑋𝑌) ∈ ℝ)
7016, 69readdcld 10672 . . . . . . . 8 (𝜑 → (𝑇 + (𝑋𝑌)) ∈ ℝ)
7116, 26elrpd 12431 . . . . . . . 8 (𝜑𝑇 ∈ ℝ+)
7234, 46addcomd 10844 . . . . . . . . . . . . . . 15 (𝜑 → (𝑋 + 𝑇) = (𝑇 + 𝑋))
7372oveq2d 7174 . . . . . . . . . . . . . 14 (𝜑 → (𝑋(,](𝑋 + 𝑇)) = (𝑋(,](𝑇 + 𝑋)))
749, 73eleqtrd 2917 . . . . . . . . . . . . 13 (𝜑𝑌 ∈ (𝑋(,](𝑇 + 𝑋)))
7516, 10readdcld 10672 . . . . . . . . . . . . . 14 (𝜑 → (𝑇 + 𝑋) ∈ ℝ)
76 elioc2 12802 . . . . . . . . . . . . . 14 ((𝑋 ∈ ℝ* ∧ (𝑇 + 𝑋) ∈ ℝ) → (𝑌 ∈ (𝑋(,](𝑇 + 𝑋)) ↔ (𝑌 ∈ ℝ ∧ 𝑋 < 𝑌𝑌 ≤ (𝑇 + 𝑋))))
7711, 75, 76syl2anc 586 . . . . . . . . . . . . 13 (𝜑 → (𝑌 ∈ (𝑋(,](𝑇 + 𝑋)) ↔ (𝑌 ∈ ℝ ∧ 𝑋 < 𝑌𝑌 ≤ (𝑇 + 𝑋))))
7874, 77mpbid 234 . . . . . . . . . . . 12 (𝜑 → (𝑌 ∈ ℝ ∧ 𝑋 < 𝑌𝑌 ≤ (𝑇 + 𝑋)))
7978simp3d 1140 . . . . . . . . . . 11 (𝜑𝑌 ≤ (𝑇 + 𝑋))
8021, 10, 16lesubaddd 11239 . . . . . . . . . . 11 (𝜑 → ((𝑌𝑋) ≤ 𝑇𝑌 ≤ (𝑇 + 𝑋)))
8179, 80mpbird 259 . . . . . . . . . 10 (𝜑 → (𝑌𝑋) ≤ 𝑇)
8221, 10resubcld 11070 . . . . . . . . . . 11 (𝜑 → (𝑌𝑋) ∈ ℝ)
8316, 82subge0d 11232 . . . . . . . . . 10 (𝜑 → (0 ≤ (𝑇 − (𝑌𝑋)) ↔ (𝑌𝑋) ≤ 𝑇))
8481, 83mpbird 259 . . . . . . . . 9 (𝜑 → 0 ≤ (𝑇 − (𝑌𝑋)))
8546, 35, 34subsub2d 11028 . . . . . . . . 9 (𝜑 → (𝑇 − (𝑌𝑋)) = (𝑇 + (𝑋𝑌)))
8684, 85breqtrd 5094 . . . . . . . 8 (𝜑 → 0 ≤ (𝑇 + (𝑋𝑌)))
8770, 71, 86divge0d 12474 . . . . . . 7 (𝜑 → 0 ≤ ((𝑇 + (𝑋𝑌)) / 𝑇))
8846, 62, 46, 27divdird 11456 . . . . . . . 8 (𝜑 → ((𝑇 + (𝑋𝑌)) / 𝑇) = ((𝑇 / 𝑇) + ((𝑋𝑌) / 𝑇)))
8946, 27dividd 11416 . . . . . . . . . 10 (𝜑 → (𝑇 / 𝑇) = 1)
9089eqcomd 2829 . . . . . . . . 9 (𝜑 → 1 = (𝑇 / 𝑇))
9190oveq1d 7173 . . . . . . . 8 (𝜑 → (1 + ((𝑋𝑌) / 𝑇)) = ((𝑇 / 𝑇) + ((𝑋𝑌) / 𝑇)))
9288, 91eqtr4d 2861 . . . . . . 7 (𝜑 → ((𝑇 + (𝑋𝑌)) / 𝑇) = (1 + ((𝑋𝑌) / 𝑇)))
9387, 92breqtrd 5094 . . . . . 6 (𝜑 → 0 ≤ (1 + ((𝑋𝑌) / 𝑇)))
9420simp2d 1139 . . . . . . . . 9 (𝜑𝑋 < 𝑌)
9510, 21sublt0d 11268 . . . . . . . . 9 (𝜑 → ((𝑋𝑌) < 0 ↔ 𝑋 < 𝑌))
9694, 95mpbird 259 . . . . . . . 8 (𝜑 → (𝑋𝑌) < 0)
9769, 71, 96divlt0gt0d 41559 . . . . . . 7 (𝜑 → ((𝑋𝑌) / 𝑇) < 0)
9869, 16, 27redivcld 11470 . . . . . . . 8 (𝜑 → ((𝑋𝑌) / 𝑇) ∈ ℝ)
99 1red 10644 . . . . . . . 8 (𝜑 → 1 ∈ ℝ)
100 ltaddneg 10857 . . . . . . . 8 ((((𝑋𝑌) / 𝑇) ∈ ℝ ∧ 1 ∈ ℝ) → (((𝑋𝑌) / 𝑇) < 0 ↔ (1 + ((𝑋𝑌) / 𝑇)) < 1))
10198, 99, 100syl2anc 586 . . . . . . 7 (𝜑 → (((𝑋𝑌) / 𝑇) < 0 ↔ (1 + ((𝑋𝑌) / 𝑇)) < 1))
10297, 101mpbid 234 . . . . . 6 (𝜑 → (1 + ((𝑋𝑌) / 𝑇)) < 1)
10353flcld 13171 . . . . . . . . . . . . . . 15 (𝜑 → (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ)
104103zcnd 12091 . . . . . . . . . . . . . 14 (𝜑 → (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℂ)
105104, 46mulcld 10663 . . . . . . . . . . . . 13 (𝜑 → ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) ∈ ℂ)
10634, 105pncan2d 11001 . . . . . . . . . . . 12 (𝜑 → ((𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) − 𝑋) = ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
107106eqcomd 2829 . . . . . . . . . . 11 (𝜑 → ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) = ((𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) − 𝑋))
108107oveq1d 7173 . . . . . . . . . 10 (𝜑 → (((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) / 𝑇) = (((𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) − 𝑋) / 𝑇))
109104, 46, 27divcan4d 11424 . . . . . . . . . 10 (𝜑 → (((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) / 𝑇) = (⌊‘((𝐵𝑋) / 𝑇)))
110 id 22 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑋𝑥 = 𝑋)
111 oveq2 7166 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑋 → (𝐵𝑥) = (𝐵𝑋))
112111oveq1d 7173 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑋 → ((𝐵𝑥) / 𝑇) = ((𝐵𝑋) / 𝑇))
113112fveq2d 6676 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑋 → (⌊‘((𝐵𝑥) / 𝑇)) = (⌊‘((𝐵𝑋) / 𝑇)))
114113oveq1d 7173 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑋 → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) = ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
115110, 114oveq12d 7176 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑋 → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = (𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
116115adantl 484 . . . . . . . . . . . . . . 15 ((𝜑𝑥 = 𝑋) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = (𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
117 reflcl 13169 . . . . . . . . . . . . . . . . . 18 (((𝐵𝑋) / 𝑇) ∈ ℝ → (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℝ)
11853, 117syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℝ)
119118, 16remulcld 10673 . . . . . . . . . . . . . . . 16 (𝜑 → ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) ∈ ℝ)
12010, 119readdcld 10672 . . . . . . . . . . . . . . 15 (𝜑 → (𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) ∈ ℝ)
1212, 116, 10, 120fvmptd 6777 . . . . . . . . . . . . . 14 (𝜑 → (𝐸𝑋) = (𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
122121eqcomd 2829 . . . . . . . . . . . . 13 (𝜑 → (𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) = (𝐸𝑋))
123122oveq1d 7173 . . . . . . . . . . . 12 (𝜑 → ((𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) − 𝑋) = ((𝐸𝑋) − 𝑋))
124123oveq1d 7173 . . . . . . . . . . 11 (𝜑 → (((𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) − 𝑋) / 𝑇) = (((𝐸𝑋) − 𝑋) / 𝑇))
125 fourierdlem26.7 . . . . . . . . . . . . 13 (𝜑 → (𝐸𝑋) = 𝐵)
126125oveq1d 7173 . . . . . . . . . . . 12 (𝜑 → ((𝐸𝑋) − 𝑋) = (𝐵𝑋))
127126oveq1d 7173 . . . . . . . . . . 11 (𝜑 → (((𝐸𝑋) − 𝑋) / 𝑇) = ((𝐵𝑋) / 𝑇))
128124, 127eqtrd 2858 . . . . . . . . . 10 (𝜑 → (((𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) − 𝑋) / 𝑇) = ((𝐵𝑋) / 𝑇))
129108, 109, 1283eqtr3d 2866 . . . . . . . . 9 (𝜑 → (⌊‘((𝐵𝑋) / 𝑇)) = ((𝐵𝑋) / 𝑇))
130129, 103eqeltrrd 2916 . . . . . . . 8 (𝜑 → ((𝐵𝑋) / 𝑇) ∈ ℤ)
131 1zzd 12016 . . . . . . . 8 (𝜑 → 1 ∈ ℤ)
132130, 131zsubcld 12095 . . . . . . 7 (𝜑 → (((𝐵𝑋) / 𝑇) − 1) ∈ ℤ)
13399, 98readdcld 10672 . . . . . . 7 (𝜑 → (1 + ((𝑋𝑌) / 𝑇)) ∈ ℝ)
134 flbi2 13190 . . . . . . 7 (((((𝐵𝑋) / 𝑇) − 1) ∈ ℤ ∧ (1 + ((𝑋𝑌) / 𝑇)) ∈ ℝ) → ((⌊‘((((𝐵𝑋) / 𝑇) − 1) + (1 + ((𝑋𝑌) / 𝑇)))) = (((𝐵𝑋) / 𝑇) − 1) ↔ (0 ≤ (1 + ((𝑋𝑌) / 𝑇)) ∧ (1 + ((𝑋𝑌) / 𝑇)) < 1)))
135132, 133, 134syl2anc 586 . . . . . 6 (𝜑 → ((⌊‘((((𝐵𝑋) / 𝑇) − 1) + (1 + ((𝑋𝑌) / 𝑇)))) = (((𝐵𝑋) / 𝑇) − 1) ↔ (0 ≤ (1 + ((𝑋𝑌) / 𝑇)) ∧ (1 + ((𝑋𝑌) / 𝑇)) < 1)))
13693, 102, 135mpbir2and 711 . . . . 5 (𝜑 → (⌊‘((((𝐵𝑋) / 𝑇) − 1) + (1 + ((𝑋𝑌) / 𝑇)))) = (((𝐵𝑋) / 𝑇) − 1))
137129eqcomd 2829 . . . . . 6 (𝜑 → ((𝐵𝑋) / 𝑇) = (⌊‘((𝐵𝑋) / 𝑇)))
138137oveq1d 7173 . . . . 5 (𝜑 → (((𝐵𝑋) / 𝑇) − 1) = ((⌊‘((𝐵𝑋) / 𝑇)) − 1))
13968, 136, 1383eqtrd 2862 . . . 4 (𝜑 → (⌊‘((𝐵𝑌) / 𝑇)) = ((⌊‘((𝐵𝑋) / 𝑇)) − 1))
140139oveq1d 7173 . . 3 (𝜑 → ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇) = (((⌊‘((𝐵𝑋) / 𝑇)) − 1) · 𝑇))
141140oveq2d 7174 . 2 (𝜑 → (𝑌 + ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇)) = (𝑌 + (((⌊‘((𝐵𝑋) / 𝑇)) − 1) · 𝑇)))
14237oveq1d 7173 . . 3 (𝜑 → (𝑌 + (((⌊‘((𝐵𝑋) / 𝑇)) − 1) · 𝑇)) = ((𝑋 + (𝑌𝑋)) + (((⌊‘((𝐵𝑋) / 𝑇)) − 1) · 𝑇)))
143104, 57, 46subdird 11099 . . . . 5 (𝜑 → (((⌊‘((𝐵𝑋) / 𝑇)) − 1) · 𝑇) = (((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) − (1 · 𝑇)))
144143oveq2d 7174 . . . 4 (𝜑 → ((𝑋 + (𝑌𝑋)) + (((⌊‘((𝐵𝑋) / 𝑇)) − 1) · 𝑇)) = ((𝑋 + (𝑌𝑋)) + (((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) − (1 · 𝑇))))
14534, 40addcld 10662 . . . . . 6 (𝜑 → (𝑋 + (𝑌𝑋)) ∈ ℂ)
14657, 46mulcld 10663 . . . . . 6 (𝜑 → (1 · 𝑇) ∈ ℂ)
147145, 105, 146addsubassd 11019 . . . . 5 (𝜑 → (((𝑋 + (𝑌𝑋)) + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) − (1 · 𝑇)) = ((𝑋 + (𝑌𝑋)) + (((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) − (1 · 𝑇))))
148147eqcomd 2829 . . . 4 (𝜑 → ((𝑋 + (𝑌𝑋)) + (((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) − (1 · 𝑇))) = (((𝑋 + (𝑌𝑋)) + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) − (1 · 𝑇)))
14934, 40, 105add32d 10869 . . . . . 6 (𝜑 → ((𝑋 + (𝑌𝑋)) + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) = ((𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) + (𝑌𝑋)))
150149oveq1d 7173 . . . . 5 (𝜑 → (((𝑋 + (𝑌𝑋)) + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) − (1 · 𝑇)) = (((𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) + (𝑌𝑋)) − (1 · 𝑇)))
151122oveq1d 7173 . . . . . 6 (𝜑 → ((𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) + (𝑌𝑋)) = ((𝐸𝑋) + (𝑌𝑋)))
15246mulid2d 10661 . . . . . 6 (𝜑 → (1 · 𝑇) = 𝑇)
153151, 152oveq12d 7176 . . . . 5 (𝜑 → (((𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) + (𝑌𝑋)) − (1 · 𝑇)) = (((𝐸𝑋) + (𝑌𝑋)) − 𝑇))
154125, 13eqeltrd 2915 . . . . . . . 8 (𝜑 → (𝐸𝑋) ∈ ℝ)
155154recnd 10671 . . . . . . 7 (𝜑 → (𝐸𝑋) ∈ ℂ)
156155, 40, 46addsubd 11020 . . . . . 6 (𝜑 → (((𝐸𝑋) + (𝑌𝑋)) − 𝑇) = (((𝐸𝑋) − 𝑇) + (𝑌𝑋)))
157125oveq1d 7173 . . . . . . . 8 (𝜑 → ((𝐸𝑋) − 𝑇) = (𝐵𝑇))
15812a1i 11 . . . . . . . . 9 (𝜑𝑇 = (𝐵𝐴))
159158oveq2d 7174 . . . . . . . 8 (𝜑 → (𝐵𝑇) = (𝐵 − (𝐵𝐴)))
16014recnd 10671 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
16139, 160nncand 11004 . . . . . . . 8 (𝜑 → (𝐵 − (𝐵𝐴)) = 𝐴)
162157, 159, 1613eqtrd 2862 . . . . . . 7 (𝜑 → ((𝐸𝑋) − 𝑇) = 𝐴)
163162oveq1d 7173 . . . . . 6 (𝜑 → (((𝐸𝑋) − 𝑇) + (𝑌𝑋)) = (𝐴 + (𝑌𝑋)))
164156, 163eqtrd 2858 . . . . 5 (𝜑 → (((𝐸𝑋) + (𝑌𝑋)) − 𝑇) = (𝐴 + (𝑌𝑋)))
165150, 153, 1643eqtrd 2862 . . . 4 (𝜑 → (((𝑋 + (𝑌𝑋)) + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) − (1 · 𝑇)) = (𝐴 + (𝑌𝑋)))
166144, 148, 1653eqtrd 2862 . . 3 (𝜑 → ((𝑋 + (𝑌𝑋)) + (((⌊‘((𝐵𝑋) / 𝑇)) − 1) · 𝑇)) = (𝐴 + (𝑌𝑋)))
167142, 166eqtrd 2858 . 2 (𝜑 → (𝑌 + (((⌊‘((𝐵𝑋) / 𝑇)) − 1) · 𝑇)) = (𝐴 + (𝑌𝑋)))
16833, 141, 1673eqtrd 2862 1 (𝜑 → (𝐸𝑌) = (𝐴 + (𝑌𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114   class class class wbr 5068  cmpt 5148  cfv 6357  (class class class)co 7158  cr 10538  0cc0 10539  1c1 10540   + caddc 10542   · cmul 10544  *cxr 10676   < clt 10677  cle 10678  cmin 10872  -cneg 10873   / cdiv 11299  cz 11984  (,]cioc 12742  cfl 13163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-inf 8909  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-ioc 12746  df-fl 13165
This theorem is referenced by:  fourierdlem65  42463  fourierdlem79  42477
  Copyright terms: Public domain W3C validator