Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem27 Structured version   Visualization version   GIF version

Theorem fourierdlem27 42413
Description: A partition open interval is a subset of the partitioned open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem27.a (𝜑𝐴 ∈ ℝ*)
fourierdlem27.b (𝜑𝐵 ∈ ℝ*)
fourierdlem27.q (𝜑𝑄:(0...𝑀)⟶(𝐴[,]𝐵))
fourierdlem27.i (𝜑𝐼 ∈ (0..^𝑀))
Assertion
Ref Expression
fourierdlem27 (𝜑 → ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ (𝐴(,)𝐵))

Proof of Theorem fourierdlem27
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem27.a . . . . 5 (𝜑𝐴 ∈ ℝ*)
21adantr 483 . . . 4 ((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝐴 ∈ ℝ*)
3 fourierdlem27.b . . . . 5 (𝜑𝐵 ∈ ℝ*)
43adantr 483 . . . 4 ((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝐵 ∈ ℝ*)
5 elioore 12762 . . . . 5 (𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))) → 𝑥 ∈ ℝ)
65adantl 484 . . . 4 ((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑥 ∈ ℝ)
7 iccssxr 12813 . . . . . . 7 (𝐴[,]𝐵) ⊆ ℝ*
8 fourierdlem27.q . . . . . . . 8 (𝜑𝑄:(0...𝑀)⟶(𝐴[,]𝐵))
9 fourierdlem27.i . . . . . . . . 9 (𝜑𝐼 ∈ (0..^𝑀))
10 elfzofz 13047 . . . . . . . . 9 (𝐼 ∈ (0..^𝑀) → 𝐼 ∈ (0...𝑀))
119, 10syl 17 . . . . . . . 8 (𝜑𝐼 ∈ (0...𝑀))
128, 11ffvelrnd 6846 . . . . . . 7 (𝜑 → (𝑄𝐼) ∈ (𝐴[,]𝐵))
137, 12sseldi 3964 . . . . . 6 (𝜑 → (𝑄𝐼) ∈ ℝ*)
1413adantr 483 . . . . 5 ((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑄𝐼) ∈ ℝ*)
156rexrd 10685 . . . . 5 ((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑥 ∈ ℝ*)
16 iccgelb 12787 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑄𝐼) ∈ (𝐴[,]𝐵)) → 𝐴 ≤ (𝑄𝐼))
171, 3, 12, 16syl3anc 1367 . . . . . 6 (𝜑𝐴 ≤ (𝑄𝐼))
1817adantr 483 . . . . 5 ((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝐴 ≤ (𝑄𝐼))
19 fzofzp1 13128 . . . . . . . . . 10 (𝐼 ∈ (0..^𝑀) → (𝐼 + 1) ∈ (0...𝑀))
209, 19syl 17 . . . . . . . . 9 (𝜑 → (𝐼 + 1) ∈ (0...𝑀))
218, 20ffvelrnd 6846 . . . . . . . 8 (𝜑 → (𝑄‘(𝐼 + 1)) ∈ (𝐴[,]𝐵))
227, 21sseldi 3964 . . . . . . 7 (𝜑 → (𝑄‘(𝐼 + 1)) ∈ ℝ*)
2322adantr 483 . . . . . 6 ((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑄‘(𝐼 + 1)) ∈ ℝ*)
24 simpr 487 . . . . . 6 ((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))))
25 ioogtlb 41763 . . . . . 6 (((𝑄𝐼) ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ*𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑄𝐼) < 𝑥)
2614, 23, 24, 25syl3anc 1367 . . . . 5 ((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑄𝐼) < 𝑥)
272, 14, 15, 18, 26xrlelttrd 12547 . . . 4 ((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝐴 < 𝑥)
28 iooltub 41779 . . . . . 6 (((𝑄𝐼) ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ*𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑥 < (𝑄‘(𝐼 + 1)))
2914, 23, 24, 28syl3anc 1367 . . . . 5 ((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑥 < (𝑄‘(𝐼 + 1)))
30 iccleub 12786 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ (𝐴[,]𝐵)) → (𝑄‘(𝐼 + 1)) ≤ 𝐵)
311, 3, 21, 30syl3anc 1367 . . . . . 6 (𝜑 → (𝑄‘(𝐼 + 1)) ≤ 𝐵)
3231adantr 483 . . . . 5 ((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑄‘(𝐼 + 1)) ≤ 𝐵)
3315, 23, 4, 29, 32xrltletrd 12548 . . . 4 ((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑥 < 𝐵)
342, 4, 6, 27, 33eliood 41766 . . 3 ((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑥 ∈ (𝐴(,)𝐵))
3534ralrimiva 3182 . 2 (𝜑 → ∀𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))𝑥 ∈ (𝐴(,)𝐵))
36 dfss3 3955 . 2 (((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ (𝐴(,)𝐵) ↔ ∀𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))𝑥 ∈ (𝐴(,)𝐵))
3735, 36sylibr 236 1 (𝜑 → ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ (𝐴(,)𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wcel 2110  wral 3138  wss 3935   class class class wbr 5058  wf 6345  cfv 6349  (class class class)co 7150  cr 10530  0cc0 10531  1c1 10532   + caddc 10534  *cxr 10668   < clt 10669  cle 10670  (,)cioo 12732  [,]cicc 12735  ...cfz 12886  ..^cfzo 13027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11892  df-z 11976  df-uz 12238  df-ioo 12736  df-icc 12739  df-fz 12887  df-fzo 13028
This theorem is referenced by:  fourierdlem102  42487  fourierdlem114  42499
  Copyright terms: Public domain W3C validator