Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem49 Structured version   Visualization version   GIF version

Theorem fourierdlem49 42317
Description: The given periodic function 𝐹 has a left limit at every point in the reals. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem49.a (𝜑𝐴 ∈ ℝ)
fourierdlem49.b (𝜑𝐵 ∈ ℝ)
fourierdlem49.altb (𝜑𝐴 < 𝐵)
fourierdlem49.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem49.t 𝑇 = (𝐵𝐴)
fourierdlem49.m (𝜑𝑀 ∈ ℕ)
fourierdlem49.q (𝜑𝑄 ∈ (𝑃𝑀))
fourierdlem49.d (𝜑𝐷 ⊆ ℝ)
fourierdlem49.f (𝜑𝐹:𝐷⟶ℝ)
fourierdlem49.dper ((𝜑𝑥𝐷𝑘 ∈ ℤ) → (𝑥 + (𝑘 · 𝑇)) ∈ 𝐷)
fourierdlem49.per ((𝜑𝑥𝐷𝑘 ∈ ℤ) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥))
fourierdlem49.cn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
fourierdlem49.l ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
fourierdlem49.x (𝜑𝑋 ∈ ℝ)
fourierdlem49.z 𝑍 = (𝑥 ∈ ℝ ↦ ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))
fourierdlem49.e 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + (𝑍𝑥)))
Assertion
Ref Expression
fourierdlem49 (𝜑 → ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋) ≠ ∅)
Distinct variable groups:   𝐴,𝑖,𝑚,𝑝   𝑥,𝐴,𝑖   𝐵,𝑖,𝑘   𝐵,𝑚,𝑝   𝑥,𝐵,𝑘   𝐷,𝑘,𝑥   𝑖,𝐸,𝑘,𝑥   𝑖,𝐹,𝑘,𝑥   𝑖,𝑀,𝑘   𝑚,𝑀,𝑝   𝑥,𝑀   𝑄,𝑖,𝑘   𝑄,𝑝   𝑥,𝑄   𝑇,𝑘,𝑥   𝑖,𝑋,𝑘,𝑥   𝑘,𝑍,𝑥   𝜑,𝑖,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝐴(𝑘)   𝐷(𝑖,𝑚,𝑝)   𝑃(𝑥,𝑖,𝑘,𝑚,𝑝)   𝑄(𝑚)   𝑇(𝑖,𝑚,𝑝)   𝐸(𝑚,𝑝)   𝐹(𝑚,𝑝)   𝐿(𝑥,𝑖,𝑘,𝑚,𝑝)   𝑋(𝑚,𝑝)   𝑍(𝑖,𝑚,𝑝)

Proof of Theorem fourierdlem49
Dummy variables 𝑗 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem49.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
2 fourierdlem49.b . . . . . 6 (𝜑𝐵 ∈ ℝ)
3 fourierdlem49.altb . . . . . 6 (𝜑𝐴 < 𝐵)
4 fourierdlem49.t . . . . . 6 𝑇 = (𝐵𝐴)
5 fourierdlem49.e . . . . . . 7 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + (𝑍𝑥)))
6 ovex 7178 . . . . . . . . . 10 ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) ∈ V
7 fourierdlem49.z . . . . . . . . . . 11 𝑍 = (𝑥 ∈ ℝ ↦ ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))
87fvmpt2 6771 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) ∈ V) → (𝑍𝑥) = ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))
96, 8mpan2 687 . . . . . . . . 9 (𝑥 ∈ ℝ → (𝑍𝑥) = ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))
109oveq2d 7161 . . . . . . . 8 (𝑥 ∈ ℝ → (𝑥 + (𝑍𝑥)) = (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
1110mpteq2ia 5148 . . . . . . 7 (𝑥 ∈ ℝ ↦ (𝑥 + (𝑍𝑥))) = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
125, 11eqtri 2841 . . . . . 6 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
131, 2, 3, 4, 12fourierdlem4 42273 . . . . 5 (𝜑𝐸:ℝ⟶(𝐴(,]𝐵))
14 fourierdlem49.x . . . . 5 (𝜑𝑋 ∈ ℝ)
1513, 14ffvelrnd 6844 . . . 4 (𝜑 → (𝐸𝑋) ∈ (𝐴(,]𝐵))
16 simpr 485 . . . . . . 7 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝐸𝑋) ∈ ran 𝑄) → (𝐸𝑋) ∈ ran 𝑄)
17 fourierdlem49.q . . . . . . . . . . . . 13 (𝜑𝑄 ∈ (𝑃𝑀))
18 fourierdlem49.m . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ ℕ)
19 fourierdlem49.p . . . . . . . . . . . . . . 15 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
2019fourierdlem2 42271 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
2118, 20syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
2217, 21mpbid 233 . . . . . . . . . . . 12 (𝜑 → (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
2322simpld 495 . . . . . . . . . . 11 (𝜑𝑄 ∈ (ℝ ↑m (0...𝑀)))
24 elmapi 8417 . . . . . . . . . . 11 (𝑄 ∈ (ℝ ↑m (0...𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
2523, 24syl 17 . . . . . . . . . 10 (𝜑𝑄:(0...𝑀)⟶ℝ)
26 ffn 6507 . . . . . . . . . 10 (𝑄:(0...𝑀)⟶ℝ → 𝑄 Fn (0...𝑀))
2725, 26syl 17 . . . . . . . . 9 (𝜑𝑄 Fn (0...𝑀))
2827ad2antrr 722 . . . . . . . 8 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝐸𝑋) ∈ ran 𝑄) → 𝑄 Fn (0...𝑀))
29 fvelrnb 6719 . . . . . . . 8 (𝑄 Fn (0...𝑀) → ((𝐸𝑋) ∈ ran 𝑄 ↔ ∃𝑗 ∈ (0...𝑀)(𝑄𝑗) = (𝐸𝑋)))
3028, 29syl 17 . . . . . . 7 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝐸𝑋) ∈ ran 𝑄) → ((𝐸𝑋) ∈ ran 𝑄 ↔ ∃𝑗 ∈ (0...𝑀)(𝑄𝑗) = (𝐸𝑋)))
3116, 30mpbid 233 . . . . . 6 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝐸𝑋) ∈ ran 𝑄) → ∃𝑗 ∈ (0...𝑀)(𝑄𝑗) = (𝐸𝑋))
32 1zzd 12001 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 1 ∈ ℤ)
33 elfzelz 12896 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℤ)
3433ad2antlr 723 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝑗 ∈ ℤ)
35 1e0p1 12128 . . . . . . . . . . . . . . . . 17 1 = (0 + 1)
3635a1i 11 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 1 = (0 + 1))
3734zred 12075 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝑗 ∈ ℝ)
38 elfzle1 12898 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (0...𝑀) → 0 ≤ 𝑗)
3938ad2antlr 723 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 0 ≤ 𝑗)
40 id 22 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑄𝑗) = (𝐸𝑋) → (𝑄𝑗) = (𝐸𝑋))
4140eqcomd 2824 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑄𝑗) = (𝐸𝑋) → (𝐸𝑋) = (𝑄𝑗))
4241ad2antlr 723 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑄𝑗) = (𝐸𝑋)) ∧ 𝑗 = 0) → (𝐸𝑋) = (𝑄𝑗))
43 fveq2 6663 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 = 0 → (𝑄𝑗) = (𝑄‘0))
4443adantl 482 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑄𝑗) = (𝐸𝑋)) ∧ 𝑗 = 0) → (𝑄𝑗) = (𝑄‘0))
4522simprld 768 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵))
4645simpld 495 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝑄‘0) = 𝐴)
4746ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑄𝑗) = (𝐸𝑋)) ∧ 𝑗 = 0) → (𝑄‘0) = 𝐴)
4842, 44, 473eqtrd 2857 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑄𝑗) = (𝐸𝑋)) ∧ 𝑗 = 0) → (𝐸𝑋) = 𝐴)
4948adantllr 715 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝑄𝑗) = (𝐸𝑋)) ∧ 𝑗 = 0) → (𝐸𝑋) = 𝐴)
5049adantllr 715 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) ∧ 𝑗 = 0) → (𝐸𝑋) = 𝐴)
511adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → 𝐴 ∈ ℝ)
521rexrd 10679 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐴 ∈ ℝ*)
5352adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → 𝐴 ∈ ℝ*)
542rexrd 10679 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐵 ∈ ℝ*)
5554adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → 𝐵 ∈ ℝ*)
56 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → (𝐸𝑋) ∈ (𝐴(,]𝐵))
57 iocgtlb 41653 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → 𝐴 < (𝐸𝑋))
5853, 55, 56, 57syl3anc 1363 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → 𝐴 < (𝐸𝑋))
5951, 58gtned 10763 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → (𝐸𝑋) ≠ 𝐴)
6059neneqd 3018 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → ¬ (𝐸𝑋) = 𝐴)
6160ad3antrrr 726 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) ∧ 𝑗 = 0) → ¬ (𝐸𝑋) = 𝐴)
6250, 61pm2.65da 813 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → ¬ 𝑗 = 0)
6362neqned 3020 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝑗 ≠ 0)
6437, 39, 63ne0gt0d 10765 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 0 < 𝑗)
65 0zd 11981 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 0 ∈ ℤ)
66 zltp1le 12020 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (0 < 𝑗 ↔ (0 + 1) ≤ 𝑗))
6765, 34, 66syl2anc 584 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (0 < 𝑗 ↔ (0 + 1) ≤ 𝑗))
6864, 67mpbid 233 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (0 + 1) ≤ 𝑗)
6936, 68eqbrtrd 5079 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 1 ≤ 𝑗)
70 eluz2 12237 . . . . . . . . . . . . . . 15 (𝑗 ∈ (ℤ‘1) ↔ (1 ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ 1 ≤ 𝑗))
7132, 34, 69, 70syl3anbrc 1335 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝑗 ∈ (ℤ‘1))
72 nnuz 12269 . . . . . . . . . . . . . 14 ℕ = (ℤ‘1)
7371, 72eleqtrrdi 2921 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝑗 ∈ ℕ)
74 nnm1nn0 11926 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → (𝑗 − 1) ∈ ℕ0)
7573, 74syl 17 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑗 − 1) ∈ ℕ0)
76 nn0uz 12268 . . . . . . . . . . . . 13 0 = (ℤ‘0)
7776a1i 11 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → ℕ0 = (ℤ‘0))
7875, 77eleqtrd 2912 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑗 − 1) ∈ (ℤ‘0))
7918nnzd 12074 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℤ)
8079ad3antrrr 726 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝑀 ∈ ℤ)
81 peano2zm 12013 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℤ → (𝑗 − 1) ∈ ℤ)
8233, 81syl 17 . . . . . . . . . . . . . 14 (𝑗 ∈ (0...𝑀) → (𝑗 − 1) ∈ ℤ)
8382zred 12075 . . . . . . . . . . . . 13 (𝑗 ∈ (0...𝑀) → (𝑗 − 1) ∈ ℝ)
8433zred 12075 . . . . . . . . . . . . 13 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℝ)
85 elfzel2 12894 . . . . . . . . . . . . . 14 (𝑗 ∈ (0...𝑀) → 𝑀 ∈ ℤ)
8685zred 12075 . . . . . . . . . . . . 13 (𝑗 ∈ (0...𝑀) → 𝑀 ∈ ℝ)
8784ltm1d 11560 . . . . . . . . . . . . 13 (𝑗 ∈ (0...𝑀) → (𝑗 − 1) < 𝑗)
88 elfzle2 12899 . . . . . . . . . . . . 13 (𝑗 ∈ (0...𝑀) → 𝑗𝑀)
8983, 84, 86, 87, 88ltletrd 10788 . . . . . . . . . . . 12 (𝑗 ∈ (0...𝑀) → (𝑗 − 1) < 𝑀)
9089ad2antlr 723 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑗 − 1) < 𝑀)
91 elfzo2 13029 . . . . . . . . . . 11 ((𝑗 − 1) ∈ (0..^𝑀) ↔ ((𝑗 − 1) ∈ (ℤ‘0) ∧ 𝑀 ∈ ℤ ∧ (𝑗 − 1) < 𝑀))
9278, 80, 90, 91syl3anbrc 1335 . . . . . . . . . 10 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑗 − 1) ∈ (0..^𝑀))
9325ad3antrrr 726 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝑄:(0...𝑀)⟶ℝ)
9434, 81syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑗 − 1) ∈ ℤ)
9565, 80, 943jca 1120 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑗 − 1) ∈ ℤ))
9675nn0ge0d 11946 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 0 ≤ (𝑗 − 1))
9783, 86, 89ltled 10776 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (0...𝑀) → (𝑗 − 1) ≤ 𝑀)
9897ad2antlr 723 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑗 − 1) ≤ 𝑀)
9995, 96, 98jca32 516 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → ((0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑗 − 1) ∈ ℤ) ∧ (0 ≤ (𝑗 − 1) ∧ (𝑗 − 1) ≤ 𝑀)))
100 elfz2 12887 . . . . . . . . . . . . . . 15 ((𝑗 − 1) ∈ (0...𝑀) ↔ ((0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑗 − 1) ∈ ℤ) ∧ (0 ≤ (𝑗 − 1) ∧ (𝑗 − 1) ≤ 𝑀)))
10199, 100sylibr 235 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑗 − 1) ∈ (0...𝑀))
10293, 101ffvelrnd 6844 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄‘(𝑗 − 1)) ∈ ℝ)
103102rexrd 10679 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄‘(𝑗 − 1)) ∈ ℝ*)
10425ffvelrnda 6843 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (0...𝑀)) → (𝑄𝑗) ∈ ℝ)
105104rexrd 10679 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0...𝑀)) → (𝑄𝑗) ∈ ℝ*)
106105adantlr 711 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) → (𝑄𝑗) ∈ ℝ*)
107106adantr 481 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄𝑗) ∈ ℝ*)
108 iocssre 12804 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴(,]𝐵) ⊆ ℝ)
10952, 2, 108syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴(,]𝐵) ⊆ ℝ)
110109sselda 3964 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → (𝐸𝑋) ∈ ℝ)
111110rexrd 10679 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → (𝐸𝑋) ∈ ℝ*)
112111ad2antrr 722 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝐸𝑋) ∈ ℝ*)
113 simplll 771 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝜑)
114 ovex 7178 . . . . . . . . . . . . . . . 16 (𝑗 − 1) ∈ V
115 eleq1 2897 . . . . . . . . . . . . . . . . . 18 (𝑖 = (𝑗 − 1) → (𝑖 ∈ (0..^𝑀) ↔ (𝑗 − 1) ∈ (0..^𝑀)))
116115anbi2d 628 . . . . . . . . . . . . . . . . 17 (𝑖 = (𝑗 − 1) → ((𝜑𝑖 ∈ (0..^𝑀)) ↔ (𝜑 ∧ (𝑗 − 1) ∈ (0..^𝑀))))
117 fveq2 6663 . . . . . . . . . . . . . . . . . 18 (𝑖 = (𝑗 − 1) → (𝑄𝑖) = (𝑄‘(𝑗 − 1)))
118 oveq1 7152 . . . . . . . . . . . . . . . . . . 19 (𝑖 = (𝑗 − 1) → (𝑖 + 1) = ((𝑗 − 1) + 1))
119118fveq2d 6667 . . . . . . . . . . . . . . . . . 18 (𝑖 = (𝑗 − 1) → (𝑄‘(𝑖 + 1)) = (𝑄‘((𝑗 − 1) + 1)))
120117, 119breq12d 5070 . . . . . . . . . . . . . . . . 17 (𝑖 = (𝑗 − 1) → ((𝑄𝑖) < (𝑄‘(𝑖 + 1)) ↔ (𝑄‘(𝑗 − 1)) < (𝑄‘((𝑗 − 1) + 1))))
121116, 120imbi12d 346 . . . . . . . . . . . . . . . 16 (𝑖 = (𝑗 − 1) → (((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1))) ↔ ((𝜑 ∧ (𝑗 − 1) ∈ (0..^𝑀)) → (𝑄‘(𝑗 − 1)) < (𝑄‘((𝑗 − 1) + 1)))))
12222simprrd 770 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))
123122r19.21bi 3205 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
124114, 121, 123vtocl 3557 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 − 1) ∈ (0..^𝑀)) → (𝑄‘(𝑗 − 1)) < (𝑄‘((𝑗 − 1) + 1)))
125113, 92, 124syl2anc 584 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄‘(𝑗 − 1)) < (𝑄‘((𝑗 − 1) + 1)))
12633zcnd 12076 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℂ)
127 1cnd 10624 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (0...𝑀) → 1 ∈ ℂ)
128126, 127npcand 10989 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (0...𝑀) → ((𝑗 − 1) + 1) = 𝑗)
129128eqcomd 2824 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (0...𝑀) → 𝑗 = ((𝑗 − 1) + 1))
130129fveq2d 6667 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (0...𝑀) → (𝑄𝑗) = (𝑄‘((𝑗 − 1) + 1)))
131130eqcomd 2824 . . . . . . . . . . . . . . 15 (𝑗 ∈ (0...𝑀) → (𝑄‘((𝑗 − 1) + 1)) = (𝑄𝑗))
132131ad2antlr 723 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄‘((𝑗 − 1) + 1)) = (𝑄𝑗))
133125, 132breqtrd 5083 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄‘(𝑗 − 1)) < (𝑄𝑗))
134 simpr 485 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄𝑗) = (𝐸𝑋))
135133, 134breqtrd 5083 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄‘(𝑗 − 1)) < (𝐸𝑋))
136109, 15sseldd 3965 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐸𝑋) ∈ ℝ)
137136leidd 11194 . . . . . . . . . . . . . . 15 (𝜑 → (𝐸𝑋) ≤ (𝐸𝑋))
138137ad2antrr 722 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝐸𝑋) ≤ (𝐸𝑋))
13941adantl 482 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝐸𝑋) = (𝑄𝑗))
140138, 139breqtrd 5083 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝐸𝑋) ≤ (𝑄𝑗))
141140adantllr 715 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝐸𝑋) ≤ (𝑄𝑗))
142103, 107, 112, 135, 141eliocd 41659 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝐸𝑋) ∈ ((𝑄‘(𝑗 − 1))(,](𝑄𝑗)))
143130oveq2d 7161 . . . . . . . . . . . 12 (𝑗 ∈ (0...𝑀) → ((𝑄‘(𝑗 − 1))(,](𝑄𝑗)) = ((𝑄‘(𝑗 − 1))(,](𝑄‘((𝑗 − 1) + 1))))
144143ad2antlr 723 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → ((𝑄‘(𝑗 − 1))(,](𝑄𝑗)) = ((𝑄‘(𝑗 − 1))(,](𝑄‘((𝑗 − 1) + 1))))
145142, 144eleqtrd 2912 . . . . . . . . . 10 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝐸𝑋) ∈ ((𝑄‘(𝑗 − 1))(,](𝑄‘((𝑗 − 1) + 1))))
146117, 119oveq12d 7163 . . . . . . . . . . . 12 (𝑖 = (𝑗 − 1) → ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))) = ((𝑄‘(𝑗 − 1))(,](𝑄‘((𝑗 − 1) + 1))))
147146eleq2d 2895 . . . . . . . . . . 11 (𝑖 = (𝑗 − 1) → ((𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))) ↔ (𝐸𝑋) ∈ ((𝑄‘(𝑗 − 1))(,](𝑄‘((𝑗 − 1) + 1)))))
148147rspcev 3620 . . . . . . . . . 10 (((𝑗 − 1) ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄‘(𝑗 − 1))(,](𝑄‘((𝑗 − 1) + 1)))) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))))
14992, 145, 148syl2anc 584 . . . . . . . . 9 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))))
150149ex 413 . . . . . . . 8 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) → ((𝑄𝑗) = (𝐸𝑋) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))))
151150adantlr 711 . . . . . . 7 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝐸𝑋) ∈ ran 𝑄) ∧ 𝑗 ∈ (0...𝑀)) → ((𝑄𝑗) = (𝐸𝑋) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))))
152151rexlimdva 3281 . . . . . 6 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝐸𝑋) ∈ ran 𝑄) → (∃𝑗 ∈ (0...𝑀)(𝑄𝑗) = (𝐸𝑋) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))))
15331, 152mpd 15 . . . . 5 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝐸𝑋) ∈ ran 𝑄) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))))
15418ad2antrr 722 . . . . . . 7 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) → 𝑀 ∈ ℕ)
15525ad2antrr 722 . . . . . . 7 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) → 𝑄:(0...𝑀)⟶ℝ)
156 iocssicc 12813 . . . . . . . . . 10 (𝐴(,]𝐵) ⊆ (𝐴[,]𝐵)
15746eqcomd 2824 . . . . . . . . . . 11 (𝜑𝐴 = (𝑄‘0))
15845simprd 496 . . . . . . . . . . . 12 (𝜑 → (𝑄𝑀) = 𝐵)
159158eqcomd 2824 . . . . . . . . . . 11 (𝜑𝐵 = (𝑄𝑀))
160157, 159oveq12d 7163 . . . . . . . . . 10 (𝜑 → (𝐴[,]𝐵) = ((𝑄‘0)[,](𝑄𝑀)))
161156, 160sseqtrid 4016 . . . . . . . . 9 (𝜑 → (𝐴(,]𝐵) ⊆ ((𝑄‘0)[,](𝑄𝑀)))
162161sselda 3964 . . . . . . . 8 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → (𝐸𝑋) ∈ ((𝑄‘0)[,](𝑄𝑀)))
163162adantr 481 . . . . . . 7 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) → (𝐸𝑋) ∈ ((𝑄‘0)[,](𝑄𝑀)))
164 simpr 485 . . . . . . 7 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) → ¬ (𝐸𝑋) ∈ ran 𝑄)
165 fveq2 6663 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝑄𝑘) = (𝑄𝑗))
166165breq1d 5067 . . . . . . . . 9 (𝑘 = 𝑗 → ((𝑄𝑘) < (𝐸𝑋) ↔ (𝑄𝑗) < (𝐸𝑋)))
167166cbvrabv 3489 . . . . . . . 8 {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < (𝐸𝑋)} = {𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) < (𝐸𝑋)}
168167supeq1i 8899 . . . . . . 7 sup({𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < (𝐸𝑋)}, ℝ, < ) = sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) < (𝐸𝑋)}, ℝ, < )
169154, 155, 163, 164, 168fourierdlem25 42294 . . . . . 6 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
170 ioossioc 41642 . . . . . . . . 9 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))
171170sseli 3960 . . . . . . . 8 ((𝐸𝑋) ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))))
172171a1i 11 . . . . . . 7 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐸𝑋) ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))))
173172reximdva 3271 . . . . . 6 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) → (∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))))
174169, 173mpd 15 . . . . 5 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))))
175153, 174pm2.61dan 809 . . . 4 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))))
17615, 175mpdan 683 . . 3 (𝜑 → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))))
177 fourierdlem49.f . . . . . . . . . . 11 (𝜑𝐹:𝐷⟶ℝ)
178 frel 6512 . . . . . . . . . . 11 (𝐹:𝐷⟶ℝ → Rel 𝐹)
179177, 178syl 17 . . . . . . . . . 10 (𝜑 → Rel 𝐹)
180 resindm 5893 . . . . . . . . . . 11 (Rel 𝐹 → (𝐹 ↾ ((-∞(,)(𝐸𝑋)) ∩ dom 𝐹)) = (𝐹 ↾ (-∞(,)(𝐸𝑋))))
181180eqcomd 2824 . . . . . . . . . 10 (Rel 𝐹 → (𝐹 ↾ (-∞(,)(𝐸𝑋))) = (𝐹 ↾ ((-∞(,)(𝐸𝑋)) ∩ dom 𝐹)))
182179, 181syl 17 . . . . . . . . 9 (𝜑 → (𝐹 ↾ (-∞(,)(𝐸𝑋))) = (𝐹 ↾ ((-∞(,)(𝐸𝑋)) ∩ dom 𝐹)))
183 fdm 6515 . . . . . . . . . . . 12 (𝐹:𝐷⟶ℝ → dom 𝐹 = 𝐷)
184177, 183syl 17 . . . . . . . . . . 11 (𝜑 → dom 𝐹 = 𝐷)
185184ineq2d 4186 . . . . . . . . . 10 (𝜑 → ((-∞(,)(𝐸𝑋)) ∩ dom 𝐹) = ((-∞(,)(𝐸𝑋)) ∩ 𝐷))
186185reseq2d 5846 . . . . . . . . 9 (𝜑 → (𝐹 ↾ ((-∞(,)(𝐸𝑋)) ∩ dom 𝐹)) = (𝐹 ↾ ((-∞(,)(𝐸𝑋)) ∩ 𝐷)))
187182, 186eqtrd 2853 . . . . . . . 8 (𝜑 → (𝐹 ↾ (-∞(,)(𝐸𝑋))) = (𝐹 ↾ ((-∞(,)(𝐸𝑋)) ∩ 𝐷)))
1881873ad2ant1 1125 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐹 ↾ (-∞(,)(𝐸𝑋))) = (𝐹 ↾ ((-∞(,)(𝐸𝑋)) ∩ 𝐷)))
189188oveq1d 7160 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ (-∞(,)(𝐸𝑋))) lim (𝐸𝑋)) = ((𝐹 ↾ ((-∞(,)(𝐸𝑋)) ∩ 𝐷)) lim (𝐸𝑋)))
190 ax-resscn 10582 . . . . . . . . . . 11 ℝ ⊆ ℂ
191190a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ⊆ ℂ)
192177, 191fssd 6521 . . . . . . . . 9 (𝜑𝐹:𝐷⟶ℂ)
1931923ad2ant1 1125 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → 𝐹:𝐷⟶ℂ)
194 inss2 4203 . . . . . . . . 9 ((-∞(,)(𝐸𝑋)) ∩ 𝐷) ⊆ 𝐷
195194a1i 11 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((-∞(,)(𝐸𝑋)) ∩ 𝐷) ⊆ 𝐷)
196193, 195fssresd 6538 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐹 ↾ ((-∞(,)(𝐸𝑋)) ∩ 𝐷)):((-∞(,)(𝐸𝑋)) ∩ 𝐷)⟶ℂ)
197 mnfxr 10686 . . . . . . . . . 10 -∞ ∈ ℝ*
198197a1i 11 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → -∞ ∈ ℝ*)
19925adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
200 elfzofz 13041 . . . . . . . . . . . . . 14 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
201200adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀))
202199, 201ffvelrnd 6844 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℝ)
203202rexrd 10679 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℝ*)
204202mnfltd 12507 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → -∞ < (𝑄𝑖))
205198, 203, 204xrltled 12531 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → -∞ ≤ (𝑄𝑖))
206 iooss1 12761 . . . . . . . . . 10 ((-∞ ∈ ℝ* ∧ -∞ ≤ (𝑄𝑖)) → ((𝑄𝑖)(,)(𝐸𝑋)) ⊆ (-∞(,)(𝐸𝑋)))
207197, 205, 206sylancr 587 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝐸𝑋)) ⊆ (-∞(,)(𝐸𝑋)))
2082073adant3 1124 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄𝑖)(,)(𝐸𝑋)) ⊆ (-∞(,)(𝐸𝑋)))
209 fzofzp1 13122 . . . . . . . . . . . . . 14 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
210209adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀))
211199, 210ffvelrnd 6844 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
2122113adant3 1124 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
213212rexrd 10679 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑄‘(𝑖 + 1)) ∈ ℝ*)
2142023adant3 1124 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑄𝑖) ∈ ℝ)
215214rexrd 10679 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑄𝑖) ∈ ℝ*)
216 simp3 1130 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))))
217 iocleub 41654 . . . . . . . . . . 11 (((𝑄𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ* ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸𝑋) ≤ (𝑄‘(𝑖 + 1)))
218215, 213, 216, 217syl3anc 1363 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸𝑋) ≤ (𝑄‘(𝑖 + 1)))
219 iooss2 12762 . . . . . . . . . 10 (((𝑄‘(𝑖 + 1)) ∈ ℝ* ∧ (𝐸𝑋) ≤ (𝑄‘(𝑖 + 1))) → ((𝑄𝑖)(,)(𝐸𝑋)) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
220213, 218, 219syl2anc 584 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄𝑖)(,)(𝐸𝑋)) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
221 fourierdlem49.cn . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
222 cncff 23428 . . . . . . . . . . . . 13 ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ)
223 fdm 6515 . . . . . . . . . . . . 13 ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ → dom (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
224221, 222, 2233syl 18 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → dom (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
225 ssdmres 5869 . . . . . . . . . . . 12 (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐹 ↔ dom (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
226224, 225sylibr 235 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐹)
227184adantr 481 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → dom 𝐹 = 𝐷)
228226, 227sseqtrd 4004 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ 𝐷)
2292283adant3 1124 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ 𝐷)
230220, 229sstrd 3974 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄𝑖)(,)(𝐸𝑋)) ⊆ 𝐷)
231208, 230ssind 4206 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄𝑖)(,)(𝐸𝑋)) ⊆ ((-∞(,)(𝐸𝑋)) ∩ 𝐷))
232 fourierdlem49.d . . . . . . . . . 10 (𝜑𝐷 ⊆ ℝ)
233232, 191sstrd 3974 . . . . . . . . 9 (𝜑𝐷 ⊆ ℂ)
2342333ad2ant1 1125 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → 𝐷 ⊆ ℂ)
235194, 234sstrid 3975 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((-∞(,)(𝐸𝑋)) ∩ 𝐷) ⊆ ℂ)
236 eqid 2818 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
237 eqid 2818 . . . . . . 7 ((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) = ((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))
2381363ad2ant1 1125 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸𝑋) ∈ ℝ)
239238rexrd 10679 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸𝑋) ∈ ℝ*)
240 iocgtlb 41653 . . . . . . . . . 10 (((𝑄𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ* ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑄𝑖) < (𝐸𝑋))
241215, 213, 216, 240syl3anc 1363 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑄𝑖) < (𝐸𝑋))
242238leidd 11194 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸𝑋) ≤ (𝐸𝑋))
243215, 239, 239, 241, 242eliocd 41659 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝐸𝑋)))
244 ioounsn 12851 . . . . . . . . . . 11 (((𝑄𝑖) ∈ ℝ* ∧ (𝐸𝑋) ∈ ℝ* ∧ (𝑄𝑖) < (𝐸𝑋)) → (((𝑄𝑖)(,)(𝐸𝑋)) ∪ {(𝐸𝑋)}) = ((𝑄𝑖)(,](𝐸𝑋)))
245215, 239, 241, 244syl3anc 1363 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝑄𝑖)(,)(𝐸𝑋)) ∪ {(𝐸𝑋)}) = ((𝑄𝑖)(,](𝐸𝑋)))
246245fveq2d 6667 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((int‘((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))‘(((𝑄𝑖)(,)(𝐸𝑋)) ∪ {(𝐸𝑋)})) = ((int‘((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))‘((𝑄𝑖)(,](𝐸𝑋))))
247236cnfldtop 23319 . . . . . . . . . . 11 (TopOpen‘ℂfld) ∈ Top
248 ovex 7178 . . . . . . . . . . . . 13 (-∞(,)(𝐸𝑋)) ∈ V
249248inex1 5212 . . . . . . . . . . . 12 ((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∈ V
250 snex 5322 . . . . . . . . . . . 12 {(𝐸𝑋)} ∈ V
251249, 250unex 7458 . . . . . . . . . . 11 (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}) ∈ V
252 resttop 21696 . . . . . . . . . . 11 (((TopOpen‘ℂfld) ∈ Top ∧ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}) ∈ V) → ((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) ∈ Top)
253247, 251, 252mp2an 688 . . . . . . . . . 10 ((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) ∈ Top
254 retop 23297 . . . . . . . . . . . . 13 (topGen‘ran (,)) ∈ Top
255254a1i 11 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (topGen‘ran (,)) ∈ Top)
256251a1i 11 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}) ∈ V)
257 iooretop 23301 . . . . . . . . . . . . 13 ((𝑄𝑖)(,)+∞) ∈ (topGen‘ran (,))
258257a1i 11 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄𝑖)(,)+∞) ∈ (topGen‘ran (,)))
259 elrestr 16690 . . . . . . . . . . . 12 (((topGen‘ran (,)) ∈ Top ∧ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}) ∈ V ∧ ((𝑄𝑖)(,)+∞) ∈ (topGen‘ran (,))) → (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) ∈ ((topGen‘ran (,)) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))
260255, 256, 258, 259syl3anc 1363 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) ∈ ((topGen‘ran (,)) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))
261 simpr 485 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 = (𝐸𝑋)) → 𝑥 = (𝐸𝑋))
262 pnfxr 10683 . . . . . . . . . . . . . . . . . . . 20 +∞ ∈ ℝ*
263262a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → +∞ ∈ ℝ*)
264238ltpnfd 12504 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸𝑋) < +∞)
265215, 263, 238, 241, 264eliood 41649 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸𝑋) ∈ ((𝑄𝑖)(,)+∞))
266 snidg 4589 . . . . . . . . . . . . . . . . . . . . 21 ((𝐸𝑋) ∈ ℝ → (𝐸𝑋) ∈ {(𝐸𝑋)})
267 elun2 4150 . . . . . . . . . . . . . . . . . . . . 21 ((𝐸𝑋) ∈ {(𝐸𝑋)} → (𝐸𝑋) ∈ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))
268266, 267syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝐸𝑋) ∈ ℝ → (𝐸𝑋) ∈ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))
269136, 268syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐸𝑋) ∈ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))
2702693ad2ant1 1125 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸𝑋) ∈ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))
271265, 270elind 4168 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸𝑋) ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))
272271adantr 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 = (𝐸𝑋)) → (𝐸𝑋) ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))
273261, 272eqeltrd 2910 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 = (𝐸𝑋)) → 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))
274273adantlr 711 . . . . . . . . . . . . . 14 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ 𝑥 = (𝐸𝑋)) → 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))
275215adantr 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → (𝑄𝑖) ∈ ℝ*)
276262a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → +∞ ∈ ℝ*)
277203adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → (𝑄𝑖) ∈ ℝ*)
278136adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐸𝑋) ∈ ℝ)
279278adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → (𝐸𝑋) ∈ ℝ)
280 iocssre 12804 . . . . . . . . . . . . . . . . . . . 20 (((𝑄𝑖) ∈ ℝ* ∧ (𝐸𝑋) ∈ ℝ) → ((𝑄𝑖)(,](𝐸𝑋)) ⊆ ℝ)
281277, 279, 280syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → ((𝑄𝑖)(,](𝐸𝑋)) ⊆ ℝ)
282 simpr 485 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋)))
283281, 282sseldd 3965 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → 𝑥 ∈ ℝ)
2842833adantl3 1160 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → 𝑥 ∈ ℝ)
285279rexrd 10679 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → (𝐸𝑋) ∈ ℝ*)
286 iocgtlb 41653 . . . . . . . . . . . . . . . . . . 19 (((𝑄𝑖) ∈ ℝ* ∧ (𝐸𝑋) ∈ ℝ*𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → (𝑄𝑖) < 𝑥)
287277, 285, 282, 286syl3anc 1363 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → (𝑄𝑖) < 𝑥)
2882873adantl3 1160 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → (𝑄𝑖) < 𝑥)
289284ltpnfd 12504 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → 𝑥 < +∞)
290275, 276, 284, 288, 289eliood 41649 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → 𝑥 ∈ ((𝑄𝑖)(,)+∞))
291290adantr 481 . . . . . . . . . . . . . . 15 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → 𝑥 ∈ ((𝑄𝑖)(,)+∞))
292197a1i 11 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → -∞ ∈ ℝ*)
293285adantr 481 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → (𝐸𝑋) ∈ ℝ*)
294283adantr 481 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → 𝑥 ∈ ℝ)
295294mnfltd 12507 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → -∞ < 𝑥)
296136ad3antrrr 726 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → (𝐸𝑋) ∈ ℝ)
297 iocleub 41654 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑄𝑖) ∈ ℝ* ∧ (𝐸𝑋) ∈ ℝ*𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → 𝑥 ≤ (𝐸𝑋))
298277, 285, 282, 297syl3anc 1363 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → 𝑥 ≤ (𝐸𝑋))
299298adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → 𝑥 ≤ (𝐸𝑋))
300 neqne 3021 . . . . . . . . . . . . . . . . . . . . . 22 𝑥 = (𝐸𝑋) → 𝑥 ≠ (𝐸𝑋))
301300necomd 3068 . . . . . . . . . . . . . . . . . . . . 21 𝑥 = (𝐸𝑋) → (𝐸𝑋) ≠ 𝑥)
302301adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → (𝐸𝑋) ≠ 𝑥)
303294, 296, 299, 302leneltd 10782 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → 𝑥 < (𝐸𝑋))
304292, 293, 294, 295, 303eliood 41649 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → 𝑥 ∈ (-∞(,)(𝐸𝑋)))
3053043adantll3 41178 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → 𝑥 ∈ (-∞(,)(𝐸𝑋)))
306229ad2antrr 722 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ 𝐷)
307275adantr 481 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → (𝑄𝑖) ∈ ℝ*)
308213ad2antrr 722 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → (𝑄‘(𝑖 + 1)) ∈ ℝ*)
309284adantr 481 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → 𝑥 ∈ ℝ)
310288adantr 481 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → (𝑄𝑖) < 𝑥)
311238ad2antrr 722 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → (𝐸𝑋) ∈ ℝ)
312212ad2antrr 722 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
3133033adantll3 41178 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → 𝑥 < (𝐸𝑋))
314218ad2antrr 722 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → (𝐸𝑋) ≤ (𝑄‘(𝑖 + 1)))
315309, 311, 312, 313, 314ltletrd 10788 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → 𝑥 < (𝑄‘(𝑖 + 1)))
316307, 308, 309, 310, 315eliood 41649 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
317306, 316sseldd 3965 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → 𝑥𝐷)
318305, 317elind 4168 . . . . . . . . . . . . . . . 16 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → 𝑥 ∈ ((-∞(,)(𝐸𝑋)) ∩ 𝐷))
319 elun1 4149 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ((-∞(,)(𝐸𝑋)) ∩ 𝐷) → 𝑥 ∈ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))
320318, 319syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → 𝑥 ∈ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))
321291, 320elind 4168 . . . . . . . . . . . . . 14 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))
322274, 321pm2.61dan 809 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))
323215adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))) → (𝑄𝑖) ∈ ℝ*)
324239adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))) → (𝐸𝑋) ∈ ℝ*)
325 elinel1 4169 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) → 𝑥 ∈ ((𝑄𝑖)(,)+∞))
326 elioore 12756 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ((𝑄𝑖)(,)+∞) → 𝑥 ∈ ℝ)
327326rexrd 10679 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ((𝑄𝑖)(,)+∞) → 𝑥 ∈ ℝ*)
328325, 327syl 17 . . . . . . . . . . . . . . 15 (𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) → 𝑥 ∈ ℝ*)
329328adantl 482 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))) → 𝑥 ∈ ℝ*)
330203adantr 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))) → (𝑄𝑖) ∈ ℝ*)
331262a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))) → +∞ ∈ ℝ*)
332325adantl 482 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))) → 𝑥 ∈ ((𝑄𝑖)(,)+∞))
333 ioogtlb 41646 . . . . . . . . . . . . . . . 16 (((𝑄𝑖) ∈ ℝ* ∧ +∞ ∈ ℝ*𝑥 ∈ ((𝑄𝑖)(,)+∞)) → (𝑄𝑖) < 𝑥)
334330, 331, 332, 333syl3anc 1363 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))) → (𝑄𝑖) < 𝑥)
3353343adantl3 1160 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))) → (𝑄𝑖) < 𝑥)
336 elinel2 4170 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) → 𝑥 ∈ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))
337 elsni 4574 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ {(𝐸𝑋)} → 𝑥 = (𝐸𝑋))
338337adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ {(𝐸𝑋)}) → 𝑥 = (𝐸𝑋))
339137adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ {(𝐸𝑋)}) → (𝐸𝑋) ≤ (𝐸𝑋))
340338, 339eqbrtrd 5079 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ {(𝐸𝑋)}) → 𝑥 ≤ (𝐸𝑋))
341340adantlr 711 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) ∧ 𝑥 ∈ {(𝐸𝑋)}) → 𝑥 ≤ (𝐸𝑋))
342 simpll 763 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) ∧ ¬ 𝑥 ∈ {(𝐸𝑋)}) → 𝜑)
343 elunnel2 41173 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}) ∧ ¬ 𝑥 ∈ {(𝐸𝑋)}) → 𝑥 ∈ ((-∞(,)(𝐸𝑋)) ∩ 𝐷))
344343adantll 710 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) ∧ ¬ 𝑥 ∈ {(𝐸𝑋)}) → 𝑥 ∈ ((-∞(,)(𝐸𝑋)) ∩ 𝐷))
345 elinel1 4169 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ((-∞(,)(𝐸𝑋)) ∩ 𝐷) → 𝑥 ∈ (-∞(,)(𝐸𝑋)))
346 elioore 12756 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (-∞(,)(𝐸𝑋)) → 𝑥 ∈ ℝ)
347346adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (-∞(,)(𝐸𝑋))) → 𝑥 ∈ ℝ)
348136adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (-∞(,)(𝐸𝑋))) → (𝐸𝑋) ∈ ℝ)
349197a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ (-∞(,)(𝐸𝑋))) → -∞ ∈ ℝ*)
350348rexrd 10679 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ (-∞(,)(𝐸𝑋))) → (𝐸𝑋) ∈ ℝ*)
351 simpr 485 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ (-∞(,)(𝐸𝑋))) → 𝑥 ∈ (-∞(,)(𝐸𝑋)))
352 iooltub 41662 . . . . . . . . . . . . . . . . . . . . . 22 ((-∞ ∈ ℝ* ∧ (𝐸𝑋) ∈ ℝ*𝑥 ∈ (-∞(,)(𝐸𝑋))) → 𝑥 < (𝐸𝑋))
353349, 350, 351, 352syl3anc 1363 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (-∞(,)(𝐸𝑋))) → 𝑥 < (𝐸𝑋))
354347, 348, 353ltled 10776 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (-∞(,)(𝐸𝑋))) → 𝑥 ≤ (𝐸𝑋))
355345, 354sylan2 592 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ ((-∞(,)(𝐸𝑋)) ∩ 𝐷)) → 𝑥 ≤ (𝐸𝑋))
356342, 344, 355syl2anc 584 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) ∧ ¬ 𝑥 ∈ {(𝐸𝑋)}) → 𝑥 ≤ (𝐸𝑋))
357341, 356pm2.61dan 809 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) → 𝑥 ≤ (𝐸𝑋))
358357adantlr 711 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) → 𝑥 ≤ (𝐸𝑋))
359336, 358sylan2 592 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))) → 𝑥 ≤ (𝐸𝑋))
3603593adantl3 1160 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))) → 𝑥 ≤ (𝐸𝑋))
361323, 324, 329, 335, 360eliocd 41659 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))) → 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋)))
362322, 361impbida 797 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋)) ↔ 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))))
363362eqrdv 2816 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄𝑖)(,](𝐸𝑋)) = (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))
364 ioossre 12786 . . . . . . . . . . . . . 14 (-∞(,)(𝐸𝑋)) ⊆ ℝ
365 ssinss1 4211 . . . . . . . . . . . . . 14 ((-∞(,)(𝐸𝑋)) ⊆ ℝ → ((-∞(,)(𝐸𝑋)) ∩ 𝐷) ⊆ ℝ)
366364, 365mp1i 13 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((-∞(,)(𝐸𝑋)) ∩ 𝐷) ⊆ ℝ)
367238snssd 4734 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → {(𝐸𝑋)} ⊆ ℝ)
368366, 367unssd 4159 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}) ⊆ ℝ)
369 eqid 2818 . . . . . . . . . . . . 13 (topGen‘ran (,)) = (topGen‘ran (,))
370236, 369rerest 23339 . . . . . . . . . . . 12 ((((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}) ⊆ ℝ → ((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) = ((topGen‘ran (,)) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))
371368, 370syl 17 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) = ((topGen‘ran (,)) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))
372260, 363, 3713eltr4d 2925 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄𝑖)(,](𝐸𝑋)) ∈ ((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))
373 isopn3i 21618 . . . . . . . . . 10 ((((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) ∈ Top ∧ ((𝑄𝑖)(,](𝐸𝑋)) ∈ ((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))) → ((int‘((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))‘((𝑄𝑖)(,](𝐸𝑋))) = ((𝑄𝑖)(,](𝐸𝑋)))
374253, 372, 373sylancr 587 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((int‘((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))‘((𝑄𝑖)(,](𝐸𝑋))) = ((𝑄𝑖)(,](𝐸𝑋)))
375246, 374eqtr2d 2854 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄𝑖)(,](𝐸𝑋)) = ((int‘((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))‘(((𝑄𝑖)(,)(𝐸𝑋)) ∪ {(𝐸𝑋)})))
376243, 375eleqtrd 2912 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸𝑋) ∈ ((int‘((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))‘(((𝑄𝑖)(,)(𝐸𝑋)) ∪ {(𝐸𝑋)})))
377196, 231, 235, 236, 237, 376limcres 24411 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝐹 ↾ ((-∞(,)(𝐸𝑋)) ∩ 𝐷)) ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)) = ((𝐹 ↾ ((-∞(,)(𝐸𝑋)) ∩ 𝐷)) lim (𝐸𝑋)))
378231resabs1d 5877 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ ((-∞(,)(𝐸𝑋)) ∩ 𝐷)) ↾ ((𝑄𝑖)(,)(𝐸𝑋))) = (𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))))
379378oveq1d 7160 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝐹 ↾ ((-∞(,)(𝐸𝑋)) ∩ 𝐷)) ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)) = ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)))
380189, 377, 3793eqtr2d 2859 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ (-∞(,)(𝐸𝑋))) lim (𝐸𝑋)) = ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)))
381184feq2d 6493 . . . . . . . . . . . 12 (𝜑 → (𝐹:dom 𝐹⟶ℂ ↔ 𝐹:𝐷⟶ℂ))
382192, 381mpbird 258 . . . . . . . . . . 11 (𝜑𝐹:dom 𝐹⟶ℂ)
383382adantr 481 . . . . . . . . . 10 ((𝜑𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋))) → 𝐹:dom 𝐹⟶ℂ)
3843833ad2antl1 1177 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋))) → 𝐹:dom 𝐹⟶ℂ)
385 ioosscn 41645 . . . . . . . . . 10 ((𝑄𝑖)(,)(𝐸𝑋)) ⊆ ℂ
386385a1i 11 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋))) → ((𝑄𝑖)(,)(𝐸𝑋)) ⊆ ℂ)
387184eqcomd 2824 . . . . . . . . . . . 12 (𝜑𝐷 = dom 𝐹)
3883873ad2ant1 1125 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → 𝐷 = dom 𝐹)
389230, 388sseqtrd 4004 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄𝑖)(,)(𝐸𝑋)) ⊆ dom 𝐹)
390389adantr 481 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋))) → ((𝑄𝑖)(,)(𝐸𝑋)) ⊆ dom 𝐹)
3917a1i 11 . . . . . . . . . . . . . . 15 (𝜑𝑍 = (𝑥 ∈ ℝ ↦ ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
392 oveq2 7153 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑋 → (𝐵𝑥) = (𝐵𝑋))
393392oveq1d 7160 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑋 → ((𝐵𝑥) / 𝑇) = ((𝐵𝑋) / 𝑇))
394393fveq2d 6667 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑋 → (⌊‘((𝐵𝑥) / 𝑇)) = (⌊‘((𝐵𝑋) / 𝑇)))
395394oveq1d 7160 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑋 → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) = ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
396395adantl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑥 = 𝑋) → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) = ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
3972, 14resubcld 11056 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐵𝑋) ∈ ℝ)
3982, 1resubcld 11056 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐵𝐴) ∈ ℝ)
3994, 398eqeltrid 2914 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑇 ∈ ℝ)
4001, 2posdifd 11215 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
4013, 400mpbid 233 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 0 < (𝐵𝐴))
4024eqcomi 2827 . . . . . . . . . . . . . . . . . . . . . 22 (𝐵𝐴) = 𝑇
403402a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐵𝐴) = 𝑇)
404401, 403breqtrd 5083 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → 0 < 𝑇)
405404gt0ne0d 11192 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑇 ≠ 0)
406397, 399, 405redivcld 11456 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐵𝑋) / 𝑇) ∈ ℝ)
407406flcld 13156 . . . . . . . . . . . . . . . . 17 (𝜑 → (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ)
408407zred 12075 . . . . . . . . . . . . . . . 16 (𝜑 → (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℝ)
409408, 399remulcld 10659 . . . . . . . . . . . . . . 15 (𝜑 → ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) ∈ ℝ)
410391, 396, 14, 409fvmptd 6767 . . . . . . . . . . . . . 14 (𝜑 → (𝑍𝑋) = ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
411410, 409eqeltrd 2910 . . . . . . . . . . . . 13 (𝜑 → (𝑍𝑋) ∈ ℝ)
412411recnd 10657 . . . . . . . . . . . 12 (𝜑 → (𝑍𝑋) ∈ ℂ)
413412adantr 481 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋))) → (𝑍𝑋) ∈ ℂ)
4144133ad2antl1 1177 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋))) → (𝑍𝑋) ∈ ℂ)
415414negcld 10972 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋))) → -(𝑍𝑋) ∈ ℂ)
416 eqid 2818 . . . . . . . . 9 {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))𝑧 = (𝑥 + -(𝑍𝑋))} = {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))𝑧 = (𝑥 + -(𝑍𝑋))}
417 ioosscn 41645 . . . . . . . . . . . . . . . . . . 19 (((𝑄𝑖) − (𝑍𝑋))(,)𝑋) ⊆ ℂ
418417sseli 3960 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋) → 𝑦 ∈ ℂ)
419418adantl 482 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝑦 ∈ ℂ)
420412adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝑍𝑋) ∈ ℂ)
421419, 420pncand 10986 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → ((𝑦 + (𝑍𝑋)) − (𝑍𝑋)) = 𝑦)
422421eqcomd 2824 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝑦 = ((𝑦 + (𝑍𝑋)) − (𝑍𝑋)))
4234223ad2antl1 1177 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝑦 = ((𝑦 + (𝑍𝑋)) − (𝑍𝑋)))
424410oveq2d 7161 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑦 + (𝑍𝑋)) − (𝑍𝑋)) = ((𝑦 + (𝑍𝑋)) − ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
425424adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → ((𝑦 + (𝑍𝑋)) − (𝑍𝑋)) = ((𝑦 + (𝑍𝑋)) − ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
426419, 420addcld 10648 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝑦 + (𝑍𝑋)) ∈ ℂ)
427409recnd 10657 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) ∈ ℂ)
428427adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) ∈ ℂ)
429426, 428negsubd 10991 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → ((𝑦 + (𝑍𝑋)) + -((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) = ((𝑦 + (𝑍𝑋)) − ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
430407zcnd 12076 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℂ)
431399recnd 10657 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑇 ∈ ℂ)
432430, 431mulneg1d 11081 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) = -((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
433432eqcomd 2824 . . . . . . . . . . . . . . . . . . 19 (𝜑 → -((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) = (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
434433oveq2d 7161 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑦 + (𝑍𝑋)) + -((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) = ((𝑦 + (𝑍𝑋)) + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
435434adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → ((𝑦 + (𝑍𝑋)) + -((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) = ((𝑦 + (𝑍𝑋)) + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
436425, 429, 4353eqtr2d 2859 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → ((𝑦 + (𝑍𝑋)) − (𝑍𝑋)) = ((𝑦 + (𝑍𝑋)) + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
4374363ad2antl1 1177 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → ((𝑦 + (𝑍𝑋)) − (𝑍𝑋)) = ((𝑦 + (𝑍𝑋)) + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
438407znegcld 12077 . . . . . . . . . . . . . . . . . 18 (𝜑 → -(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ)
439438adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → -(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ)
4404393ad2antl1 1177 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → -(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ)
441 simpl1 1183 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝜑)
442230adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → ((𝑄𝑖)(,)(𝐸𝑋)) ⊆ 𝐷)
443203adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝑄𝑖) ∈ ℝ*)
444136rexrd 10679 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐸𝑋) ∈ ℝ*)
445444ad2antrr 722 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝐸𝑋) ∈ ℝ*)
446 elioore 12756 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋) → 𝑦 ∈ ℝ)
447446adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝑦 ∈ ℝ)
448411adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝑍𝑋) ∈ ℝ)
449447, 448readdcld 10658 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝑦 + (𝑍𝑋)) ∈ ℝ)
450449adantlr 711 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝑦 + (𝑍𝑋)) ∈ ℝ)
451411adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑍𝑋) ∈ ℝ)
452202, 451resubcld 11056 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖) − (𝑍𝑋)) ∈ ℝ)
453452rexrd 10679 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖) − (𝑍𝑋)) ∈ ℝ*)
454453adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → ((𝑄𝑖) − (𝑍𝑋)) ∈ ℝ*)
45514rexrd 10679 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑋 ∈ ℝ*)
456455ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝑋 ∈ ℝ*)
457 simpr 485 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋))
458 ioogtlb 41646 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑄𝑖) − (𝑍𝑋)) ∈ ℝ*𝑋 ∈ ℝ*𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → ((𝑄𝑖) − (𝑍𝑋)) < 𝑦)
459454, 456, 457, 458syl3anc 1363 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → ((𝑄𝑖) − (𝑍𝑋)) < 𝑦)
460202adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝑄𝑖) ∈ ℝ)
461451adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝑍𝑋) ∈ ℝ)
462446adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝑦 ∈ ℝ)
463460, 461, 462ltsubaddd 11224 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (((𝑄𝑖) − (𝑍𝑋)) < 𝑦 ↔ (𝑄𝑖) < (𝑦 + (𝑍𝑋))))
464459, 463mpbid 233 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝑄𝑖) < (𝑦 + (𝑍𝑋)))
46514ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝑋 ∈ ℝ)
466 iooltub 41662 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑄𝑖) − (𝑍𝑋)) ∈ ℝ*𝑋 ∈ ℝ*𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝑦 < 𝑋)
467454, 456, 457, 466syl3anc 1363 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝑦 < 𝑋)
468462, 465, 461, 467ltadd1dd 11239 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝑦 + (𝑍𝑋)) < (𝑋 + (𝑍𝑋)))
4695a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + (𝑍𝑥))))
470 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = 𝑋𝑥 = 𝑋)
471 fveq2 6663 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = 𝑋 → (𝑍𝑥) = (𝑍𝑋))
472470, 471oveq12d 7163 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = 𝑋 → (𝑥 + (𝑍𝑥)) = (𝑋 + (𝑍𝑋)))
473472adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑥 = 𝑋) → (𝑥 + (𝑍𝑥)) = (𝑋 + (𝑍𝑋)))
47414, 411readdcld 10658 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝑋 + (𝑍𝑋)) ∈ ℝ)
475469, 473, 14, 474fvmptd 6767 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝐸𝑋) = (𝑋 + (𝑍𝑋)))
476475eqcomd 2824 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑋 + (𝑍𝑋)) = (𝐸𝑋))
477476ad2antrr 722 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝑋 + (𝑍𝑋)) = (𝐸𝑋))
478468, 477breqtrd 5083 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝑦 + (𝑍𝑋)) < (𝐸𝑋))
479443, 445, 450, 464, 478eliood 41649 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝑦 + (𝑍𝑋)) ∈ ((𝑄𝑖)(,)(𝐸𝑋)))
4804793adantl3 1160 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝑦 + (𝑍𝑋)) ∈ ((𝑄𝑖)(,)(𝐸𝑋)))
481442, 480sseldd 3965 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝑦 + (𝑍𝑋)) ∈ 𝐷)
482441, 481, 4403jca 1120 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝜑 ∧ (𝑦 + (𝑍𝑋)) ∈ 𝐷 ∧ -(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ))
483 eleq1 2897 . . . . . . . . . . . . . . . . . . 19 (𝑘 = -(⌊‘((𝐵𝑋) / 𝑇)) → (𝑘 ∈ ℤ ↔ -(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ))
4844833anbi3d 1433 . . . . . . . . . . . . . . . . . 18 (𝑘 = -(⌊‘((𝐵𝑋) / 𝑇)) → ((𝜑 ∧ (𝑦 + (𝑍𝑋)) ∈ 𝐷𝑘 ∈ ℤ) ↔ (𝜑 ∧ (𝑦 + (𝑍𝑋)) ∈ 𝐷 ∧ -(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ)))
485 oveq1 7152 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = -(⌊‘((𝐵𝑋) / 𝑇)) → (𝑘 · 𝑇) = (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
486485oveq2d 7161 . . . . . . . . . . . . . . . . . . 19 (𝑘 = -(⌊‘((𝐵𝑋) / 𝑇)) → ((𝑦 + (𝑍𝑋)) + (𝑘 · 𝑇)) = ((𝑦 + (𝑍𝑋)) + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
487486eleq1d 2894 . . . . . . . . . . . . . . . . . 18 (𝑘 = -(⌊‘((𝐵𝑋) / 𝑇)) → (((𝑦 + (𝑍𝑋)) + (𝑘 · 𝑇)) ∈ 𝐷 ↔ ((𝑦 + (𝑍𝑋)) + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) ∈ 𝐷))
488484, 487imbi12d 346 . . . . . . . . . . . . . . . . 17 (𝑘 = -(⌊‘((𝐵𝑋) / 𝑇)) → (((𝜑 ∧ (𝑦 + (𝑍𝑋)) ∈ 𝐷𝑘 ∈ ℤ) → ((𝑦 + (𝑍𝑋)) + (𝑘 · 𝑇)) ∈ 𝐷) ↔ ((𝜑 ∧ (𝑦 + (𝑍𝑋)) ∈ 𝐷 ∧ -(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ) → ((𝑦 + (𝑍𝑋)) + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) ∈ 𝐷)))
489 ovex 7178 . . . . . . . . . . . . . . . . . 18 (𝑦 + (𝑍𝑋)) ∈ V
490 eleq1 2897 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑦 + (𝑍𝑋)) → (𝑥𝐷 ↔ (𝑦 + (𝑍𝑋)) ∈ 𝐷))
4914903anbi2d 1432 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝑦 + (𝑍𝑋)) → ((𝜑𝑥𝐷𝑘 ∈ ℤ) ↔ (𝜑 ∧ (𝑦 + (𝑍𝑋)) ∈ 𝐷𝑘 ∈ ℤ)))
492 oveq1 7152 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑦 + (𝑍𝑋)) → (𝑥 + (𝑘 · 𝑇)) = ((𝑦 + (𝑍𝑋)) + (𝑘 · 𝑇)))
493492eleq1d 2894 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝑦 + (𝑍𝑋)) → ((𝑥 + (𝑘 · 𝑇)) ∈ 𝐷 ↔ ((𝑦 + (𝑍𝑋)) + (𝑘 · 𝑇)) ∈ 𝐷))
494491, 493imbi12d 346 . . . . . . . . . . . . . . . . . 18 (𝑥 = (𝑦 + (𝑍𝑋)) → (((𝜑𝑥𝐷𝑘 ∈ ℤ) → (𝑥 + (𝑘 · 𝑇)) ∈ 𝐷) ↔ ((𝜑 ∧ (𝑦 + (𝑍𝑋)) ∈ 𝐷𝑘 ∈ ℤ) → ((𝑦 + (𝑍𝑋)) + (𝑘 · 𝑇)) ∈ 𝐷)))
495 fourierdlem49.dper . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐷𝑘 ∈ ℤ) → (𝑥 + (𝑘 · 𝑇)) ∈ 𝐷)
496489, 494, 495vtocl 3557 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑦 + (𝑍𝑋)) ∈ 𝐷𝑘 ∈ ℤ) → ((𝑦 + (𝑍𝑋)) + (𝑘 · 𝑇)) ∈ 𝐷)
497488, 496vtoclg 3565 . . . . . . . . . . . . . . . 16 (-(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ → ((𝜑 ∧ (𝑦 + (𝑍𝑋)) ∈ 𝐷 ∧ -(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ) → ((𝑦 + (𝑍𝑋)) + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) ∈ 𝐷))
498440, 482, 497sylc 65 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → ((𝑦 + (𝑍𝑋)) + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) ∈ 𝐷)
499437, 498eqeltrd 2910 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → ((𝑦 + (𝑍𝑋)) − (𝑍𝑋)) ∈ 𝐷)
500423, 499eqeltrd 2910 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝑦𝐷)
501500ralrimiva 3179 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ∀𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)𝑦𝐷)
502 dfss3 3953 . . . . . . . . . . . 12 ((((𝑄𝑖) − (𝑍𝑋))(,)𝑋) ⊆ 𝐷 ↔ ∀𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)𝑦𝐷)
503501, 502sylibr 235 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝑄𝑖) − (𝑍𝑋))(,)𝑋) ⊆ 𝐷)
504202recnd 10657 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℂ)
505412adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑍𝑋) ∈ ℂ)
506504, 505negsubd 10991 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖) + -(𝑍𝑋)) = ((𝑄𝑖) − (𝑍𝑋)))
507506eqcomd 2824 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖) − (𝑍𝑋)) = ((𝑄𝑖) + -(𝑍𝑋)))
508475oveq1d 7160 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐸𝑋) + -(𝑍𝑋)) = ((𝑋 + (𝑍𝑋)) + -(𝑍𝑋)))
509474recnd 10657 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑋 + (𝑍𝑋)) ∈ ℂ)
510509, 412negsubd 10991 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑋 + (𝑍𝑋)) + -(𝑍𝑋)) = ((𝑋 + (𝑍𝑋)) − (𝑍𝑋)))
51114recnd 10657 . . . . . . . . . . . . . . . . 17 (𝜑𝑋 ∈ ℂ)
512511, 412pncand 10986 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑋 + (𝑍𝑋)) − (𝑍𝑋)) = 𝑋)
513508, 510, 5123eqtrrd 2858 . . . . . . . . . . . . . . 15 (𝜑𝑋 = ((𝐸𝑋) + -(𝑍𝑋)))
514513adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑋 = ((𝐸𝑋) + -(𝑍𝑋)))
515507, 514oveq12d 7163 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝑄𝑖) − (𝑍𝑋))(,)𝑋) = (((𝑄𝑖) + -(𝑍𝑋))(,)((𝐸𝑋) + -(𝑍𝑋))))
516451renegcld 11055 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → -(𝑍𝑋) ∈ ℝ)
517202, 278, 516iooshift 41674 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝑄𝑖) + -(𝑍𝑋))(,)((𝐸𝑋) + -(𝑍𝑋))) = {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))𝑧 = (𝑥 + -(𝑍𝑋))})
518515, 517eqtr2d 2854 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))𝑧 = (𝑥 + -(𝑍𝑋))} = (((𝑄𝑖) − (𝑍𝑋))(,)𝑋))
5195183adant3 1124 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))𝑧 = (𝑥 + -(𝑍𝑋))} = (((𝑄𝑖) − (𝑍𝑋))(,)𝑋))
5201843ad2ant1 1125 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → dom 𝐹 = 𝐷)
521503, 519, 5203sstr4d 4011 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))𝑧 = (𝑥 + -(𝑍𝑋))} ⊆ dom 𝐹)
522521adantr 481 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋))) → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))𝑧 = (𝑥 + -(𝑍𝑋))} ⊆ dom 𝐹)
523410negeqd 10868 . . . . . . . . . . . . . . . 16 (𝜑 → -(𝑍𝑋) = -((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
524523, 433eqtrd 2853 . . . . . . . . . . . . . . 15 (𝜑 → -(𝑍𝑋) = (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
525524oveq2d 7161 . . . . . . . . . . . . . 14 (𝜑 → (𝑥 + -(𝑍𝑋)) = (𝑥 + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
526525fveq2d 6667 . . . . . . . . . . . . 13 (𝜑 → (𝐹‘(𝑥 + -(𝑍𝑋))) = (𝐹‘(𝑥 + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))))
527526adantr 481 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))) → (𝐹‘(𝑥 + -(𝑍𝑋))) = (𝐹‘(𝑥 + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))))
5285273ad2antl1 1177 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))) → (𝐹‘(𝑥 + -(𝑍𝑋))) = (𝐹‘(𝑥 + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))))
529438adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))) → -(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ)
5305293ad2antl1 1177 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))) → -(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ)
531 simpl1 1183 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))) → 𝜑)
532230sselda 3964 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))) → 𝑥𝐷)
533531, 532, 5303jca 1120 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))) → (𝜑𝑥𝐷 ∧ -(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ))
5344833anbi3d 1433 . . . . . . . . . . . . . 14 (𝑘 = -(⌊‘((𝐵𝑋) / 𝑇)) → ((𝜑𝑥𝐷𝑘 ∈ ℤ) ↔ (𝜑𝑥𝐷 ∧ -(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ)))
535485oveq2d 7161 . . . . . . . . . . . . . . . 16 (𝑘 = -(⌊‘((𝐵𝑋) / 𝑇)) → (𝑥 + (𝑘 · 𝑇)) = (𝑥 + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
536535fveq2d 6667 . . . . . . . . . . . . . . 15 (𝑘 = -(⌊‘((𝐵𝑋) / 𝑇)) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹‘(𝑥 + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))))
537536eqeq1d 2820 . . . . . . . . . . . . . 14 (𝑘 = -(⌊‘((𝐵𝑋) / 𝑇)) → ((𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥) ↔ (𝐹‘(𝑥 + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))) = (𝐹𝑥)))
538534, 537imbi12d 346 . . . . . . . . . . . . 13 (𝑘 = -(⌊‘((𝐵𝑋) / 𝑇)) → (((𝜑𝑥𝐷𝑘 ∈ ℤ) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥)) ↔ ((𝜑𝑥𝐷 ∧ -(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ) → (𝐹‘(𝑥 + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))) = (𝐹𝑥))))
539 fourierdlem49.per . . . . . . . . . . . . 13 ((𝜑𝑥𝐷𝑘 ∈ ℤ) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥))
540538, 539vtoclg 3565 . . . . . . . . . . . 12 (-(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ → ((𝜑𝑥𝐷 ∧ -(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ) → (𝐹‘(𝑥 + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))) = (𝐹𝑥)))
541530, 533, 540sylc 65 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))) → (𝐹‘(𝑥 + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))) = (𝐹𝑥))
542528, 541eqtrd 2853 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))) → (𝐹‘(𝑥 + -(𝑍𝑋))) = (𝐹𝑥))
543542adantlr 711 . . . . . . . . 9 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋))) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))) → (𝐹‘(𝑥 + -(𝑍𝑋))) = (𝐹𝑥))
544 simpr 485 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋))) → 𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)))
545384, 386, 390, 415, 416, 522, 543, 544limcperiod 41785 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋))) → 𝑦 ∈ ((𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))𝑧 = (𝑥 + -(𝑍𝑋))}) lim ((𝐸𝑋) + -(𝑍𝑋))))
546518reseq2d 5846 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))𝑧 = (𝑥 + -(𝑍𝑋))}) = (𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)))
547514eqcomd 2824 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐸𝑋) + -(𝑍𝑋)) = 𝑋)
548546, 547oveq12d 7163 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))𝑧 = (𝑥 + -(𝑍𝑋))}) lim ((𝐸𝑋) + -(𝑍𝑋))) = ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋))
5495483adant3 1124 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))𝑧 = (𝑥 + -(𝑍𝑋))}) lim ((𝐸𝑋) + -(𝑍𝑋))) = ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋))
550549adantr 481 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋))) → ((𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))𝑧 = (𝑥 + -(𝑍𝑋))}) lim ((𝐸𝑋) + -(𝑍𝑋))) = ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋))
551545, 550eleqtrd 2912 . . . . . . 7 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋))) → 𝑦 ∈ ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋))
552382adantr 481 . . . . . . . . . 10 ((𝜑𝑦 ∈ ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋)) → 𝐹:dom 𝐹⟶ℂ)
5535523ad2antl1 1177 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋)) → 𝐹:dom 𝐹⟶ℂ)
554417a1i 11 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋)) → (((𝑄𝑖) − (𝑍𝑋))(,)𝑋) ⊆ ℂ)
555503, 520sseqtrrd 4005 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝑄𝑖) − (𝑍𝑋))(,)𝑋) ⊆ dom 𝐹)
556555adantr 481 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋)) → (((𝑄𝑖) − (𝑍𝑋))(,)𝑋) ⊆ dom 𝐹)
557412adantr 481 . . . . . . . . . 10 ((𝜑𝑦 ∈ ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋)) → (𝑍𝑋) ∈ ℂ)
5585573ad2antl1 1177 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋)) → (𝑍𝑋) ∈ ℂ)
559 eqid 2818 . . . . . . . . 9 {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)𝑧 = (𝑥 + (𝑍𝑋))} = {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)𝑧 = (𝑥 + (𝑍𝑋))}
560504, 505npcand 10989 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝑄𝑖) − (𝑍𝑋)) + (𝑍𝑋)) = (𝑄𝑖))
561560eqcomd 2824 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) = (((𝑄𝑖) − (𝑍𝑋)) + (𝑍𝑋)))
562475adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐸𝑋) = (𝑋 + (𝑍𝑋)))
563561, 562oveq12d 7163 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝐸𝑋)) = ((((𝑄𝑖) − (𝑍𝑋)) + (𝑍𝑋))(,)(𝑋 + (𝑍𝑋))))
56414adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑋 ∈ ℝ)
565452, 564, 451iooshift 41674 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → ((((𝑄𝑖) − (𝑍𝑋)) + (𝑍𝑋))(,)(𝑋 + (𝑍𝑋))) = {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)𝑧 = (𝑥 + (𝑍𝑋))})
566563, 565eqtr2d 2854 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)𝑧 = (𝑥 + (𝑍𝑋))} = ((𝑄𝑖)(,)(𝐸𝑋)))
5675663adant3 1124 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)𝑧 = (𝑥 + (𝑍𝑋))} = ((𝑄𝑖)(,)(𝐸𝑋)))
568230, 567, 5203sstr4d 4011 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)𝑧 = (𝑥 + (𝑍𝑋))} ⊆ dom 𝐹)
569568adantr 481 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋)) → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)𝑧 = (𝑥 + (𝑍𝑋))} ⊆ dom 𝐹)
570410oveq2d 7161 . . . . . . . . . . . . . 14 (𝜑 → (𝑥 + (𝑍𝑋)) = (𝑥 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
571570fveq2d 6667 . . . . . . . . . . . . 13 (𝜑 → (𝐹‘(𝑥 + (𝑍𝑋))) = (𝐹‘(𝑥 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))))
572571adantr 481 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝐹‘(𝑥 + (𝑍𝑋))) = (𝐹‘(𝑥 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))))
5735723ad2antl1 1177 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝐹‘(𝑥 + (𝑍𝑋))) = (𝐹‘(𝑥 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))))
574407adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ)
5755743ad2antl1 1177 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ)
576 simpl1 1183 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝜑)
577503sselda 3964 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝑥𝐷)
578576, 577, 5753jca 1120 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝜑𝑥𝐷 ∧ (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ))
579 eleq1 2897 . . . . . . . . . . . . . . 15 (𝑘 = (⌊‘((𝐵𝑋) / 𝑇)) → (𝑘 ∈ ℤ ↔ (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ))
5805793anbi3d 1433 . . . . . . . . . . . . . 14 (𝑘 = (⌊‘((𝐵𝑋) / 𝑇)) → ((𝜑𝑥𝐷𝑘 ∈ ℤ) ↔ (𝜑𝑥𝐷 ∧ (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ)))
581 oveq1 7152 . . . . . . . . . . . . . . . . 17 (𝑘 = (⌊‘((𝐵𝑋) / 𝑇)) → (𝑘 · 𝑇) = ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
582581oveq2d 7161 . . . . . . . . . . . . . . . 16 (𝑘 = (⌊‘((𝐵𝑋) / 𝑇)) → (𝑥 + (𝑘 · 𝑇)) = (𝑥 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
583582fveq2d 6667 . . . . . . . . . . . . . . 15 (𝑘 = (⌊‘((𝐵𝑋) / 𝑇)) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹‘(𝑥 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))))
584583eqeq1d 2820 . . . . . . . . . . . . . 14 (𝑘 = (⌊‘((𝐵𝑋) / 𝑇)) → ((𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥) ↔ (𝐹‘(𝑥 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))) = (𝐹𝑥)))
585580, 584imbi12d 346 . . . . . . . . . . . . 13 (𝑘 = (⌊‘((𝐵𝑋) / 𝑇)) → (((𝜑𝑥𝐷𝑘 ∈ ℤ) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥)) ↔ ((𝜑𝑥𝐷 ∧ (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ) → (𝐹‘(𝑥 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))) = (𝐹𝑥))))
586585, 539vtoclg 3565 . . . . . . . . . . . 12 ((⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ → ((𝜑𝑥𝐷 ∧ (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ) → (𝐹‘(𝑥 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))) = (𝐹𝑥)))
587575, 578, 586sylc 65 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝐹‘(𝑥 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))) = (𝐹𝑥))
588573, 587eqtrd 2853 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝐹‘(𝑥 + (𝑍𝑋))) = (𝐹𝑥))
589588adantlr 711 . . . . . . . . 9 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝐹‘(𝑥 + (𝑍𝑋))) = (𝐹𝑥))
590 simpr 485 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋)) → 𝑦 ∈ ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋))
591553, 554, 556, 558, 559, 569, 589, 590limcperiod 41785 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋)) → 𝑦 ∈ ((𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)𝑧 = (𝑥 + (𝑍𝑋))}) lim (𝑋 + (𝑍𝑋))))
592566reseq2d 5846 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)𝑧 = (𝑥 + (𝑍𝑋))}) = (𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))))
593476adantr 481 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑋 + (𝑍𝑋)) = (𝐸𝑋))
594592, 593oveq12d 7163 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)𝑧 = (𝑥 + (𝑍𝑋))}) lim (𝑋 + (𝑍𝑋))) = ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)))
5955943adant3 1124 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)𝑧 = (𝑥 + (𝑍𝑋))}) lim (𝑋 + (𝑍𝑋))) = ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)))
596595adantr 481 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋)) → ((𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)𝑧 = (𝑥 + (𝑍𝑋))}) lim (𝑋 + (𝑍𝑋))) = ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)))
597591, 596eleqtrd 2912 . . . . . . 7 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋)) → 𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)))
598551, 597impbida 797 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)) ↔ 𝑦 ∈ ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋)))
599598eqrdv 2816 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)) = ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋))
600 resindm 5893 . . . . . . . . . . 11 (Rel 𝐹 → (𝐹 ↾ ((-∞(,)𝑋) ∩ dom 𝐹)) = (𝐹 ↾ (-∞(,)𝑋)))
601600eqcomd 2824 . . . . . . . . . 10 (Rel 𝐹 → (𝐹 ↾ (-∞(,)𝑋)) = (𝐹 ↾ ((-∞(,)𝑋) ∩ dom 𝐹)))
602179, 601syl 17 . . . . . . . . 9 (𝜑 → (𝐹 ↾ (-∞(,)𝑋)) = (𝐹 ↾ ((-∞(,)𝑋) ∩ dom 𝐹)))
603184ineq2d 4186 . . . . . . . . . 10 (𝜑 → ((-∞(,)𝑋) ∩ dom 𝐹) = ((-∞(,)𝑋) ∩ 𝐷))
604603reseq2d 5846 . . . . . . . . 9 (𝜑 → (𝐹 ↾ ((-∞(,)𝑋) ∩ dom 𝐹)) = (𝐹 ↾ ((-∞(,)𝑋) ∩ 𝐷)))
605602, 604eqtrd 2853 . . . . . . . 8 (𝜑 → (𝐹 ↾ (-∞(,)𝑋)) = (𝐹 ↾ ((-∞(,)𝑋) ∩ 𝐷)))
606605oveq1d 7160 . . . . . . 7 (𝜑 → ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋) = ((𝐹 ↾ ((-∞(,)𝑋) ∩ 𝐷)) lim 𝑋))
6076063ad2ant1 1125 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋) = ((𝐹 ↾ ((-∞(,)𝑋) ∩ 𝐷)) lim 𝑋))
608 inss2 4203 . . . . . . . . . 10 ((-∞(,)𝑋) ∩ 𝐷) ⊆ 𝐷
609608a1i 11 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((-∞(,)𝑋) ∩ 𝐷) ⊆ 𝐷)
610193, 609fssresd 6538 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐹 ↾ ((-∞(,)𝑋) ∩ 𝐷)):((-∞(,)𝑋) ∩ 𝐷)⟶ℂ)
611452mnfltd 12507 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → -∞ < ((𝑄𝑖) − (𝑍𝑋)))
612198, 453, 611xrltled 12531 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → -∞ ≤ ((𝑄𝑖) − (𝑍𝑋)))
613 iooss1 12761 . . . . . . . . . . 11 ((-∞ ∈ ℝ* ∧ -∞ ≤ ((𝑄𝑖) − (𝑍𝑋))) → (((𝑄𝑖) − (𝑍𝑋))(,)𝑋) ⊆ (-∞(,)𝑋))
614197, 612, 613sylancr 587 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝑄𝑖) − (𝑍𝑋))(,)𝑋) ⊆ (-∞(,)𝑋))
6156143adant3 1124 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝑄𝑖) − (𝑍𝑋))(,)𝑋) ⊆ (-∞(,)𝑋))
616615, 503ssind 4206 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝑄𝑖) − (𝑍𝑋))(,)𝑋) ⊆ ((-∞(,)𝑋) ∩ 𝐷))
617608, 234sstrid 3975 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((-∞(,)𝑋) ∩ 𝐷) ⊆ ℂ)
618 eqid 2818 . . . . . . . 8 ((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) = ((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))
6194533adant3 1124 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄𝑖) − (𝑍𝑋)) ∈ ℝ*)
6204553ad2ant1 1125 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → 𝑋 ∈ ℝ*)
6214753ad2ant1 1125 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸𝑋) = (𝑋 + (𝑍𝑋)))
622241, 621breqtrd 5083 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑄𝑖) < (𝑋 + (𝑍𝑋)))
6234113ad2ant1 1125 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑍𝑋) ∈ ℝ)
624143ad2ant1 1125 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → 𝑋 ∈ ℝ)
625214, 623, 624ltsubaddd 11224 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝑄𝑖) − (𝑍𝑋)) < 𝑋 ↔ (𝑄𝑖) < (𝑋 + (𝑍𝑋))))
626622, 625mpbird 258 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄𝑖) − (𝑍𝑋)) < 𝑋)
62714leidd 11194 . . . . . . . . . . 11 (𝜑𝑋𝑋)
6286273ad2ant1 1125 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → 𝑋𝑋)
629619, 620, 620, 626, 628eliocd 41659 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → 𝑋 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋))
630 ioounsn 12851 . . . . . . . . . . . 12 ((((𝑄𝑖) − (𝑍𝑋)) ∈ ℝ*𝑋 ∈ ℝ* ∧ ((𝑄𝑖) − (𝑍𝑋)) < 𝑋) → ((((𝑄𝑖) − (𝑍𝑋))(,)𝑋) ∪ {𝑋}) = (((𝑄𝑖) − (𝑍𝑋))(,]𝑋))
631619, 620, 626, 630syl3anc 1363 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((((𝑄𝑖) − (𝑍𝑋))(,)𝑋) ∪ {𝑋}) = (((𝑄𝑖) − (𝑍𝑋))(,]𝑋))
632631fveq2d 6667 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((int‘((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})))‘((((𝑄𝑖) − (𝑍𝑋))(,)𝑋) ∪ {𝑋})) = ((int‘((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})))‘(((𝑄𝑖) − (𝑍𝑋))(,]𝑋)))
633 ovex 7178 . . . . . . . . . . . . . 14 (-∞(,)𝑋) ∈ V
634633inex1 5212 . . . . . . . . . . . . 13 ((-∞(,)𝑋) ∩ 𝐷) ∈ V
635 snex 5322 . . . . . . . . . . . . 13 {𝑋} ∈ V
636634, 635unex 7458 . . . . . . . . . . . 12 (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}) ∈ V
637 resttop 21696 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ∈ Top ∧ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}) ∈ V) → ((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) ∈ Top)
638247, 636, 637mp2an 688 . . . . . . . . . . 11 ((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) ∈ Top
639636a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}) ∈ V)
640 iooretop 23301 . . . . . . . . . . . . . 14 (((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∈ (topGen‘ran (,))
641640a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∈ (topGen‘ran (,)))
642 elrestr 16690 . . . . . . . . . . . . 13 (((topGen‘ran (,)) ∈ Top ∧ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}) ∈ V ∧ (((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∈ (topGen‘ran (,))) → ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) ∈ ((topGen‘ran (,)) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})))
643255, 639, 641, 642syl3anc 1363 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) ∈ ((topGen‘ran (,)) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})))
644453adantr 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → ((𝑄𝑖) − (𝑍𝑋)) ∈ ℝ*)
645262a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → +∞ ∈ ℝ*)
64614ad2antrr 722 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → 𝑋 ∈ ℝ)
647 iocssre 12804 . . . . . . . . . . . . . . . . . . 19 ((((𝑄𝑖) − (𝑍𝑋)) ∈ ℝ*𝑋 ∈ ℝ) → (((𝑄𝑖) − (𝑍𝑋))(,]𝑋) ⊆ ℝ)
648644, 646, 647syl2anc 584 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → (((𝑄𝑖) − (𝑍𝑋))(,]𝑋) ⊆ ℝ)
649 simpr 485 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋))
650648, 649sseldd 3965 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → 𝑥 ∈ ℝ)
651455ad2antrr 722 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → 𝑋 ∈ ℝ*)
652 iocgtlb 41653 . . . . . . . . . . . . . . . . . 18 ((((𝑄𝑖) − (𝑍𝑋)) ∈ ℝ*𝑋 ∈ ℝ*𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → ((𝑄𝑖) − (𝑍𝑋)) < 𝑥)
653644, 651, 649, 652syl3anc 1363 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → ((𝑄𝑖) − (𝑍𝑋)) < 𝑥)
654650ltpnfd 12504 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → 𝑥 < +∞)
655644, 645, 650, 653, 654eliood 41649 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)+∞))
6566553adantl3 1160 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)+∞))
657 eqvisset 3509 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑋𝑋 ∈ V)
658 snidg 4589 . . . . . . . . . . . . . . . . . . . 20 (𝑋 ∈ V → 𝑋 ∈ {𝑋})
659657, 658syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑋𝑋 ∈ {𝑋})
660470, 659eqeltrd 2910 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑋𝑥 ∈ {𝑋})
661 elun2 4150 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ {𝑋} → 𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))
662660, 661syl 17 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑋𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))
663662adantl 482 . . . . . . . . . . . . . . . 16 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) ∧ 𝑥 = 𝑋) → 𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))
664 simpll 763 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) ∧ ¬ 𝑥 = 𝑋) → (𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))))
665644adantr 481 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) ∧ ¬ 𝑥 = 𝑋) → ((𝑄𝑖) − (𝑍𝑋)) ∈ ℝ*)
666455ad3antrrr 726 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) ∧ ¬ 𝑥 = 𝑋) → 𝑋 ∈ ℝ*)
667650adantr 481 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) ∧ ¬ 𝑥 = 𝑋) → 𝑥 ∈ ℝ)
668653adantr 481 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) ∧ ¬ 𝑥 = 𝑋) → ((𝑄𝑖) − (𝑍𝑋)) < 𝑥)
66914ad3antrrr 726 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) ∧ ¬ 𝑥 = 𝑋) → 𝑋 ∈ ℝ)
670 iocleub 41654 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑄𝑖) − (𝑍𝑋)) ∈ ℝ*𝑋 ∈ ℝ*𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → 𝑥𝑋)
671644, 651, 649, 670syl3anc 1363 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → 𝑥𝑋)
672671adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) ∧ ¬ 𝑥 = 𝑋) → 𝑥𝑋)
673470eqcoms 2826 . . . . . . . . . . . . . . . . . . . . . 22 (𝑋 = 𝑥𝑥 = 𝑋)
674673necon3bi 3039 . . . . . . . . . . . . . . . . . . . . 21 𝑥 = 𝑋𝑋𝑥)
675674adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) ∧ ¬ 𝑥 = 𝑋) → 𝑋𝑥)
676667, 669, 672, 675leneltd 10782 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) ∧ ¬ 𝑥 = 𝑋) → 𝑥 < 𝑋)
677665, 666, 667, 668, 676eliood 41649 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) ∧ ¬ 𝑥 = 𝑋) → 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋))
6786773adantll3 41178 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) ∧ ¬ 𝑥 = 𝑋) → 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋))
679616sselda 3964 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝑥 ∈ ((-∞(,)𝑋) ∩ 𝐷))
680 elun1 4149 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ((-∞(,)𝑋) ∩ 𝐷) → 𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))
681679, 680syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))
682664, 678, 681syl2anc 584 . . . . . . . . . . . . . . . 16 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) ∧ ¬ 𝑥 = 𝑋) → 𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))
683663, 682pm2.61dan 809 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → 𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))
684656, 683elind 4168 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → 𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})))
685619adantr 481 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) → ((𝑄𝑖) − (𝑍𝑋)) ∈ ℝ*)
686620adantr 481 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) → 𝑋 ∈ ℝ*)
687 elinel1 4169 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) → 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)+∞))
688 elioore 12756 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)+∞) → 𝑥 ∈ ℝ)
689687, 688syl 17 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) → 𝑥 ∈ ℝ)
690689rexrd 10679 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) → 𝑥 ∈ ℝ*)
691690adantl 482 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) → 𝑥 ∈ ℝ*)
692453adantr 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) → ((𝑄𝑖) − (𝑍𝑋)) ∈ ℝ*)
693262a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) → +∞ ∈ ℝ*)
694687adantl 482 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) → 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)+∞))
695 ioogtlb 41646 . . . . . . . . . . . . . . . . 17 ((((𝑄𝑖) − (𝑍𝑋)) ∈ ℝ* ∧ +∞ ∈ ℝ*𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)+∞)) → ((𝑄𝑖) − (𝑍𝑋)) < 𝑥)
696692, 693, 694, 695syl3anc 1363 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) → ((𝑄𝑖) − (𝑍𝑋)) < 𝑥)
6976963adantl3 1160 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) → ((𝑄𝑖) − (𝑍𝑋)) < 𝑥)
698 elinel2 4170 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) → 𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))
699 elsni 4574 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ {𝑋} → 𝑥 = 𝑋)
700699adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ {𝑋}) → 𝑥 = 𝑋)
701627adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ {𝑋}) → 𝑋𝑋)
702700, 701eqbrtrd 5079 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ {𝑋}) → 𝑥𝑋)
703702adantlr 711 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) ∧ 𝑥 ∈ {𝑋}) → 𝑥𝑋)
704 simpll 763 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) ∧ ¬ 𝑥 ∈ {𝑋}) → 𝜑)
705 elunnel2 41173 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}) ∧ ¬ 𝑥 ∈ {𝑋}) → 𝑥 ∈ ((-∞(,)𝑋) ∩ 𝐷))
706705adantll 710 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) ∧ ¬ 𝑥 ∈ {𝑋}) → 𝑥 ∈ ((-∞(,)𝑋) ∩ 𝐷))
707 elinel1 4169 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ((-∞(,)𝑋) ∩ 𝐷) → 𝑥 ∈ (-∞(,)𝑋))
708706, 707syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) ∧ ¬ 𝑥 ∈ {𝑋}) → 𝑥 ∈ (-∞(,)𝑋))
709 elioore 12756 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (-∞(,)𝑋) → 𝑥 ∈ ℝ)
710709adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (-∞(,)𝑋)) → 𝑥 ∈ ℝ)
71114adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (-∞(,)𝑋)) → 𝑋 ∈ ℝ)
712197a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (-∞(,)𝑋)) → -∞ ∈ ℝ*)
713455adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (-∞(,)𝑋)) → 𝑋 ∈ ℝ*)
714 simpr 485 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (-∞(,)𝑋)) → 𝑥 ∈ (-∞(,)𝑋))
715 iooltub 41662 . . . . . . . . . . . . . . . . . . . . 21 ((-∞ ∈ ℝ*𝑋 ∈ ℝ*𝑥 ∈ (-∞(,)𝑋)) → 𝑥 < 𝑋)
716712, 713, 714, 715syl3anc 1363 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (-∞(,)𝑋)) → 𝑥 < 𝑋)
717710, 711, 716ltled 10776 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (-∞(,)𝑋)) → 𝑥𝑋)
718704, 708, 717syl2anc 584 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) ∧ ¬ 𝑥 ∈ {𝑋}) → 𝑥𝑋)
719703, 718pm2.61dan 809 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) → 𝑥𝑋)
720698, 719sylan2 592 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) → 𝑥𝑋)
7217203ad2antl1 1177 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) → 𝑥𝑋)
722685, 686, 691, 697, 721eliocd 41659 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) → 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋))
723684, 722impbida 797 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋) ↔ 𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))))
724723eqrdv 2816 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝑄𝑖) − (𝑍𝑋))(,]𝑋) = ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})))
725608, 232sstrid 3975 . . . . . . . . . . . . . . 15 (𝜑 → ((-∞(,)𝑋) ∩ 𝐷) ⊆ ℝ)
72614snssd 4734 . . . . . . . . . . . . . . 15 (𝜑 → {𝑋} ⊆ ℝ)
727725, 726unssd 4159 . . . . . . . . . . . . . 14 (𝜑 → (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}) ⊆ ℝ)
7287273ad2ant1 1125 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}) ⊆ ℝ)
729236, 369rerest 23339 . . . . . . . . . . . . 13 ((((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}) ⊆ ℝ → ((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) = ((topGen‘ran (,)) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})))
730728, 729syl 17 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) = ((topGen‘ran (,)) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})))
731643, 724, 7303eltr4d 2925 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝑄𝑖) − (𝑍𝑋))(,]𝑋) ∈ ((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})))
732 isopn3i 21618 . . . . . . . . . . 11 ((((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) ∈ Top ∧ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋) ∈ ((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) → ((int‘((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})))‘(((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) = (((𝑄𝑖) − (𝑍𝑋))(,]𝑋))
733638, 731, 732sylancr 587 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((int‘((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})))‘(((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) = (((𝑄𝑖) − (𝑍𝑋))(,]𝑋))
734632, 733eqtr2d 2854 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝑄𝑖) − (𝑍𝑋))(,]𝑋) = ((int‘((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})))‘((((𝑄𝑖) − (𝑍𝑋))(,)𝑋) ∪ {𝑋})))
735629, 734eleqtrd 2912 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → 𝑋 ∈ ((int‘((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})))‘((((𝑄𝑖) − (𝑍𝑋))(,)𝑋) ∪ {𝑋})))
736610, 616, 617, 236, 618, 735limcres 24411 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝐹 ↾ ((-∞(,)𝑋) ∩ 𝐷)) ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋) = ((𝐹 ↾ ((-∞(,)𝑋) ∩ 𝐷)) lim 𝑋))
737736eqcomd 2824 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ ((-∞(,)𝑋) ∩ 𝐷)) lim 𝑋) = (((𝐹 ↾ ((-∞(,)𝑋) ∩ 𝐷)) ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋))
738616resabs1d 5877 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ ((-∞(,)𝑋) ∩ 𝐷)) ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) = (𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)))
739738oveq1d 7160 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝐹 ↾ ((-∞(,)𝑋) ∩ 𝐷)) ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋) = ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋))
740607, 737, 7393eqtrrd 2858 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋) = ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
741380, 599, 7403eqtrrd 2858 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋) = ((𝐹 ↾ (-∞(,)(𝐸𝑋))) lim (𝐸𝑋)))
742741rexlimdv3a 3283 . . 3 (𝜑 → (∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))) → ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋) = ((𝐹 ↾ (-∞(,)(𝐸𝑋))) lim (𝐸𝑋))))
743176, 742mpd 15 . 2 (𝜑 → ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋) = ((𝐹 ↾ (-∞(,)(𝐸𝑋))) lim (𝐸𝑋)))
7441233adant3 1124 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
7452213adant3 1124 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
746 fourierdlem49.l . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
7477463adant3 1124 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
748 eqid 2818 . . . . . . . 8 if((𝐸𝑋) = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝐸𝑋))) = if((𝐸𝑋) = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝐸𝑋)))
749 eqid 2818 . . . . . . . 8 ((TopOpen‘ℂfld) ↾t (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) = ((TopOpen‘ℂfld) ↾t (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}))
750214, 212, 744, 745, 747, 214, 238, 241, 220, 748, 749fourierdlem33 42302 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → if((𝐸𝑋) = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝐸𝑋))) ∈ (((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)))
751220resabs1d 5877 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ↾ ((𝑄𝑖)(,)(𝐸𝑋))) = (𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))))
752751oveq1d 7160 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)) = ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)))
753750, 752eleqtrd 2912 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → if((𝐸𝑋) = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝐸𝑋))) ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)))
754 ne0i 4297 . . . . . 6 (if((𝐸𝑋) = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝐸𝑋))) ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)) ≠ ∅)
755753, 754syl 17 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)) ≠ ∅)
756380, 755eqnetrd 3080 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ (-∞(,)(𝐸𝑋))) lim (𝐸𝑋)) ≠ ∅)
757756rexlimdv3a 3283 . . 3 (𝜑 → (∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))) → ((𝐹 ↾ (-∞(,)(𝐸𝑋))) lim (𝐸𝑋)) ≠ ∅))
758176, 757mpd 15 . 2 (𝜑 → ((𝐹 ↾ (-∞(,)(𝐸𝑋))) lim (𝐸𝑋)) ≠ ∅)
759743, 758eqnetrd 3080 1 (𝜑 → ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  wne 3013  wral 3135  wrex 3136  {crab 3139  Vcvv 3492  cun 3931  cin 3932  wss 3933  c0 4288  ifcif 4463  {csn 4557   class class class wbr 5057  cmpt 5137  dom cdm 5548  ran crn 5549  cres 5550  Rel wrel 5553   Fn wfn 6343  wf 6344  cfv 6348  (class class class)co 7145  m cmap 8395  supcsup 8892  cc 10523  cr 10524  0cc0 10525  1c1 10526   + caddc 10528   · cmul 10530  +∞cpnf 10660  -∞cmnf 10661  *cxr 10662   < clt 10663  cle 10664  cmin 10858  -cneg 10859   / cdiv 11285  cn 11626  0cn0 11885  cz 11969  cuz 12231  (,)cioo 12726  (,]cioc 12727  [,]cicc 12729  ...cfz 12880  ..^cfzo 13021  cfl 13148  t crest 16682  TopOpenctopn 16683  topGenctg 16699  fldccnfld 20473  Topctop 21429  intcnt 21553  cnccncf 23411   lim climc 24387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-map 8397  df-pm 8398  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fi 8863  df-sup 8894  df-inf 8895  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-icc 12733  df-fz 12881  df-fzo 13022  df-fl 13150  df-seq 13358  df-exp 13418  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-plusg 16566  df-mulr 16567  df-starv 16568  df-tset 16572  df-ple 16573  df-ds 16575  df-unif 16576  df-rest 16684  df-topn 16685  df-topgen 16705  df-psmet 20465  df-xmet 20466  df-met 20467  df-bl 20468  df-mopn 20469  df-cnfld 20474  df-top 21430  df-topon 21447  df-topsp 21469  df-bases 21482  df-ntr 21556  df-cn 21763  df-cnp 21764  df-xms 22857  df-ms 22858  df-cncf 23413  df-limc 24391
This theorem is referenced by:  fourierdlem94  42362  fourierdlem113  42381
  Copyright terms: Public domain W3C validator