Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem52 Structured version   Visualization version   GIF version

Theorem fourierdlem52 42437
Description: d16:d17,d18:jca |- ( ph -> ( ( S 0) ≤ 𝐴𝐴 ≤ (𝑆 0 ) ) ) . (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem52.tf (𝜑𝑇 ∈ Fin)
fourierdlem52.n 𝑁 = ((♯‘𝑇) − 1)
fourierdlem52.s 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝑇))
fourierdlem52.a (𝜑𝐴 ∈ ℝ)
fourierdlem52.b (𝜑𝐵 ∈ ℝ)
fourierdlem52.t (𝜑𝑇 ⊆ (𝐴[,]𝐵))
fourierdlem52.at (𝜑𝐴𝑇)
fourierdlem52.bt (𝜑𝐵𝑇)
Assertion
Ref Expression
fourierdlem52 (𝜑 → ((𝑆:(0...𝑁)⟶(𝐴[,]𝐵) ∧ (𝑆‘0) = 𝐴) ∧ (𝑆𝑁) = 𝐵))
Distinct variable groups:   𝑓,𝑁   𝑆,𝑓   𝑇,𝑓   𝜑,𝑓
Allowed substitution hints:   𝐴(𝑓)   𝐵(𝑓)

Proof of Theorem fourierdlem52
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem52.tf . . . . 5 (𝜑𝑇 ∈ Fin)
2 fourierdlem52.t . . . . . 6 (𝜑𝑇 ⊆ (𝐴[,]𝐵))
3 fourierdlem52.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
4 fourierdlem52.b . . . . . . 7 (𝜑𝐵 ∈ ℝ)
53, 4iccssred 41773 . . . . . 6 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
62, 5sstrd 3976 . . . . 5 (𝜑𝑇 ⊆ ℝ)
7 fourierdlem52.s . . . . 5 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝑇))
8 fourierdlem52.n . . . . 5 𝑁 = ((♯‘𝑇) − 1)
91, 6, 7, 8fourierdlem36 42422 . . . 4 (𝜑𝑆 Isom < , < ((0...𝑁), 𝑇))
10 isof1o 7070 . . . 4 (𝑆 Isom < , < ((0...𝑁), 𝑇) → 𝑆:(0...𝑁)–1-1-onto𝑇)
11 f1of 6609 . . . 4 (𝑆:(0...𝑁)–1-1-onto𝑇𝑆:(0...𝑁)⟶𝑇)
129, 10, 113syl 18 . . 3 (𝜑𝑆:(0...𝑁)⟶𝑇)
1312, 2fssd 6522 . 2 (𝜑𝑆:(0...𝑁)⟶(𝐴[,]𝐵))
14 f1ofo 6616 . . . . . 6 (𝑆:(0...𝑁)–1-1-onto𝑇𝑆:(0...𝑁)–onto𝑇)
159, 10, 143syl 18 . . . . 5 (𝜑𝑆:(0...𝑁)–onto𝑇)
16 fourierdlem52.at . . . . 5 (𝜑𝐴𝑇)
17 foelrn 6866 . . . . 5 ((𝑆:(0...𝑁)–onto𝑇𝐴𝑇) → ∃𝑗 ∈ (0...𝑁)𝐴 = (𝑆𝑗))
1815, 16, 17syl2anc 586 . . . 4 (𝜑 → ∃𝑗 ∈ (0...𝑁)𝐴 = (𝑆𝑗))
19 elfzle1 12904 . . . . . . . . 9 (𝑗 ∈ (0...𝑁) → 0 ≤ 𝑗)
2019adantl 484 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑁)) → 0 ≤ 𝑗)
219adantr 483 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...𝑁)) → 𝑆 Isom < , < ((0...𝑁), 𝑇))
22 ressxr 10679 . . . . . . . . . . . 12 ℝ ⊆ ℝ*
236, 22sstrdi 3978 . . . . . . . . . . 11 (𝜑𝑇 ⊆ ℝ*)
2423adantr 483 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0...𝑁)) → 𝑇 ⊆ ℝ*)
25 fzssz 12903 . . . . . . . . . . 11 (0...𝑁) ⊆ ℤ
26 zssre 11982 . . . . . . . . . . . 12 ℤ ⊆ ℝ
2726, 22sstri 3975 . . . . . . . . . . 11 ℤ ⊆ ℝ*
2825, 27sstri 3975 . . . . . . . . . 10 (0...𝑁) ⊆ ℝ*
2924, 28jctil 522 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...𝑁)) → ((0...𝑁) ⊆ ℝ*𝑇 ⊆ ℝ*))
30 hashcl 13711 . . . . . . . . . . . . . . . 16 (𝑇 ∈ Fin → (♯‘𝑇) ∈ ℕ0)
311, 30syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (♯‘𝑇) ∈ ℕ0)
3216ne0d 4300 . . . . . . . . . . . . . . . 16 (𝜑𝑇 ≠ ∅)
33 hashge1 13744 . . . . . . . . . . . . . . . 16 ((𝑇 ∈ Fin ∧ 𝑇 ≠ ∅) → 1 ≤ (♯‘𝑇))
341, 32, 33syl2anc 586 . . . . . . . . . . . . . . 15 (𝜑 → 1 ≤ (♯‘𝑇))
35 elnnnn0c 11936 . . . . . . . . . . . . . . 15 ((♯‘𝑇) ∈ ℕ ↔ ((♯‘𝑇) ∈ ℕ0 ∧ 1 ≤ (♯‘𝑇)))
3631, 34, 35sylanbrc 585 . . . . . . . . . . . . . 14 (𝜑 → (♯‘𝑇) ∈ ℕ)
37 nnm1nn0 11932 . . . . . . . . . . . . . 14 ((♯‘𝑇) ∈ ℕ → ((♯‘𝑇) − 1) ∈ ℕ0)
3836, 37syl 17 . . . . . . . . . . . . 13 (𝜑 → ((♯‘𝑇) − 1) ∈ ℕ0)
398, 38eqeltrid 2917 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ0)
40 nn0uz 12274 . . . . . . . . . . . 12 0 = (ℤ‘0)
4139, 40eleqtrdi 2923 . . . . . . . . . . 11 (𝜑𝑁 ∈ (ℤ‘0))
42 eluzfz1 12908 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘0) → 0 ∈ (0...𝑁))
4341, 42syl 17 . . . . . . . . . 10 (𝜑 → 0 ∈ (0...𝑁))
4443anim1i 616 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...𝑁)) → (0 ∈ (0...𝑁) ∧ 𝑗 ∈ (0...𝑁)))
45 leisorel 13812 . . . . . . . . 9 ((𝑆 Isom < , < ((0...𝑁), 𝑇) ∧ ((0...𝑁) ⊆ ℝ*𝑇 ⊆ ℝ*) ∧ (0 ∈ (0...𝑁) ∧ 𝑗 ∈ (0...𝑁))) → (0 ≤ 𝑗 ↔ (𝑆‘0) ≤ (𝑆𝑗)))
4621, 29, 44, 45syl3anc 1367 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑁)) → (0 ≤ 𝑗 ↔ (𝑆‘0) ≤ (𝑆𝑗)))
4720, 46mpbid 234 . . . . . . 7 ((𝜑𝑗 ∈ (0...𝑁)) → (𝑆‘0) ≤ (𝑆𝑗))
48473adant3 1128 . . . . . 6 ((𝜑𝑗 ∈ (0...𝑁) ∧ 𝐴 = (𝑆𝑗)) → (𝑆‘0) ≤ (𝑆𝑗))
49 eqcom 2828 . . . . . . . 8 (𝐴 = (𝑆𝑗) ↔ (𝑆𝑗) = 𝐴)
5049biimpi 218 . . . . . . 7 (𝐴 = (𝑆𝑗) → (𝑆𝑗) = 𝐴)
51503ad2ant3 1131 . . . . . 6 ((𝜑𝑗 ∈ (0...𝑁) ∧ 𝐴 = (𝑆𝑗)) → (𝑆𝑗) = 𝐴)
5248, 51breqtrd 5084 . . . . 5 ((𝜑𝑗 ∈ (0...𝑁) ∧ 𝐴 = (𝑆𝑗)) → (𝑆‘0) ≤ 𝐴)
5352rexlimdv3a 3286 . . . 4 (𝜑 → (∃𝑗 ∈ (0...𝑁)𝐴 = (𝑆𝑗) → (𝑆‘0) ≤ 𝐴))
5418, 53mpd 15 . . 3 (𝜑 → (𝑆‘0) ≤ 𝐴)
553rexrd 10685 . . . 4 (𝜑𝐴 ∈ ℝ*)
564rexrd 10685 . . . 4 (𝜑𝐵 ∈ ℝ*)
5713, 43ffvelrnd 6846 . . . 4 (𝜑 → (𝑆‘0) ∈ (𝐴[,]𝐵))
58 iccgelb 12787 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑆‘0) ∈ (𝐴[,]𝐵)) → 𝐴 ≤ (𝑆‘0))
5955, 56, 57, 58syl3anc 1367 . . 3 (𝜑𝐴 ≤ (𝑆‘0))
605, 57sseldd 3967 . . . 4 (𝜑 → (𝑆‘0) ∈ ℝ)
6160, 3letri3d 10776 . . 3 (𝜑 → ((𝑆‘0) = 𝐴 ↔ ((𝑆‘0) ≤ 𝐴𝐴 ≤ (𝑆‘0))))
6254, 59, 61mpbir2and 711 . 2 (𝜑 → (𝑆‘0) = 𝐴)
63 eluzfz2 12909 . . . . . 6 (𝑁 ∈ (ℤ‘0) → 𝑁 ∈ (0...𝑁))
6441, 63syl 17 . . . . 5 (𝜑𝑁 ∈ (0...𝑁))
6513, 64ffvelrnd 6846 . . . 4 (𝜑 → (𝑆𝑁) ∈ (𝐴[,]𝐵))
66 iccleub 12786 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑆𝑁) ∈ (𝐴[,]𝐵)) → (𝑆𝑁) ≤ 𝐵)
6755, 56, 65, 66syl3anc 1367 . . 3 (𝜑 → (𝑆𝑁) ≤ 𝐵)
68 fourierdlem52.bt . . . . 5 (𝜑𝐵𝑇)
69 foelrn 6866 . . . . 5 ((𝑆:(0...𝑁)–onto𝑇𝐵𝑇) → ∃𝑗 ∈ (0...𝑁)𝐵 = (𝑆𝑗))
7015, 68, 69syl2anc 586 . . . 4 (𝜑 → ∃𝑗 ∈ (0...𝑁)𝐵 = (𝑆𝑗))
71 simp3 1134 . . . . . 6 ((𝜑𝑗 ∈ (0...𝑁) ∧ 𝐵 = (𝑆𝑗)) → 𝐵 = (𝑆𝑗))
72 elfzle2 12905 . . . . . . . 8 (𝑗 ∈ (0...𝑁) → 𝑗𝑁)
73723ad2ant2 1130 . . . . . . 7 ((𝜑𝑗 ∈ (0...𝑁) ∧ 𝐵 = (𝑆𝑗)) → 𝑗𝑁)
7493ad2ant1 1129 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑁) ∧ 𝐵 = (𝑆𝑗)) → 𝑆 Isom < , < ((0...𝑁), 𝑇))
75293adant3 1128 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑁) ∧ 𝐵 = (𝑆𝑗)) → ((0...𝑁) ⊆ ℝ*𝑇 ⊆ ℝ*))
76 simp2 1133 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑁) ∧ 𝐵 = (𝑆𝑗)) → 𝑗 ∈ (0...𝑁))
77643ad2ant1 1129 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑁) ∧ 𝐵 = (𝑆𝑗)) → 𝑁 ∈ (0...𝑁))
78 leisorel 13812 . . . . . . . 8 ((𝑆 Isom < , < ((0...𝑁), 𝑇) ∧ ((0...𝑁) ⊆ ℝ*𝑇 ⊆ ℝ*) ∧ (𝑗 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...𝑁))) → (𝑗𝑁 ↔ (𝑆𝑗) ≤ (𝑆𝑁)))
7974, 75, 76, 77, 78syl112anc 1370 . . . . . . 7 ((𝜑𝑗 ∈ (0...𝑁) ∧ 𝐵 = (𝑆𝑗)) → (𝑗𝑁 ↔ (𝑆𝑗) ≤ (𝑆𝑁)))
8073, 79mpbid 234 . . . . . 6 ((𝜑𝑗 ∈ (0...𝑁) ∧ 𝐵 = (𝑆𝑗)) → (𝑆𝑗) ≤ (𝑆𝑁))
8171, 80eqbrtrd 5080 . . . . 5 ((𝜑𝑗 ∈ (0...𝑁) ∧ 𝐵 = (𝑆𝑗)) → 𝐵 ≤ (𝑆𝑁))
8281rexlimdv3a 3286 . . . 4 (𝜑 → (∃𝑗 ∈ (0...𝑁)𝐵 = (𝑆𝑗) → 𝐵 ≤ (𝑆𝑁)))
8370, 82mpd 15 . . 3 (𝜑𝐵 ≤ (𝑆𝑁))
845, 65sseldd 3967 . . . 4 (𝜑 → (𝑆𝑁) ∈ ℝ)
8584, 4letri3d 10776 . . 3 (𝜑 → ((𝑆𝑁) = 𝐵 ↔ ((𝑆𝑁) ≤ 𝐵𝐵 ≤ (𝑆𝑁))))
8667, 83, 85mpbir2and 711 . 2 (𝜑 → (𝑆𝑁) = 𝐵)
8713, 62, 86jca31 517 1 (𝜑 → ((𝑆:(0...𝑁)⟶(𝐴[,]𝐵) ∧ (𝑆‘0) = 𝐴) ∧ (𝑆𝑁) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016  wrex 3139  wss 3935  c0 4290   class class class wbr 5058  cio 6306  wf 6345  ontowfo 6347  1-1-ontowf1o 6348  cfv 6349   Isom wiso 6350  (class class class)co 7150  Fincfn 8503  cr 10530  0cc0 10531  1c1 10532  *cxr 10668   < clt 10669  cle 10670  cmin 10864  cn 11632  0cn0 11891  cz 11975  cuz 12237  [,]cicc 12735  ...cfz 12886  chash 13684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11892  df-z 11976  df-uz 12238  df-icc 12739  df-fz 12887  df-hash 13685
This theorem is referenced by:  fourierdlem103  42488  fourierdlem104  42489
  Copyright terms: Public domain W3C validator