Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem53 Structured version   Visualization version   GIF version

Theorem fourierdlem53 42438
Description: The limit of 𝐹(𝑠) at (𝑋 + 𝐷) is the limit of 𝐹(𝑋 + 𝑠) at 𝐷. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem53.1 (𝜑𝐹:ℝ⟶ℝ)
fourierdlem53.2 (𝜑𝑋 ∈ ℝ)
fourierdlem53.3 (𝜑𝐴 ⊆ ℝ)
fourierdlem53.g 𝐺 = (𝑠𝐴 ↦ (𝐹‘(𝑋 + 𝑠)))
fourierdlem53.xps ((𝜑𝑠𝐴) → (𝑋 + 𝑠) ∈ 𝐵)
fourierdlem53.b (𝜑𝐵 ⊆ ℝ)
fourierdlem53.sned ((𝜑𝑠𝐴) → 𝑠𝐷)
fourierdlem53.c (𝜑𝐶 ∈ ((𝐹𝐵) lim (𝑋 + 𝐷)))
fourierdlem53.d (𝜑𝐷 ∈ ℂ)
Assertion
Ref Expression
fourierdlem53 (𝜑𝐶 ∈ (𝐺 lim 𝐷))
Distinct variable groups:   𝐴,𝑠   𝐵,𝑠   𝐷,𝑠   𝐹,𝑠   𝑋,𝑠   𝜑,𝑠
Allowed substitution hints:   𝐶(𝑠)   𝐺(𝑠)

Proof of Theorem fourierdlem53
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem53.xps . . . . . . 7 ((𝜑𝑠𝐴) → (𝑋 + 𝑠) ∈ 𝐵)
2 fourierdlem53.1 . . . . . . . . . . 11 (𝜑𝐹:ℝ⟶ℝ)
3 fourierdlem53.b . . . . . . . . . . 11 (𝜑𝐵 ⊆ ℝ)
42, 3fssresd 6539 . . . . . . . . . 10 (𝜑 → (𝐹𝐵):𝐵⟶ℝ)
54fdmd 6517 . . . . . . . . 9 (𝜑 → dom (𝐹𝐵) = 𝐵)
65eqcomd 2827 . . . . . . . 8 (𝜑𝐵 = dom (𝐹𝐵))
76adantr 483 . . . . . . 7 ((𝜑𝑠𝐴) → 𝐵 = dom (𝐹𝐵))
81, 7eleqtrd 2915 . . . . . 6 ((𝜑𝑠𝐴) → (𝑋 + 𝑠) ∈ dom (𝐹𝐵))
9 fourierdlem53.2 . . . . . . . . . . 11 (𝜑𝑋 ∈ ℝ)
109recnd 10663 . . . . . . . . . 10 (𝜑𝑋 ∈ ℂ)
1110adantr 483 . . . . . . . . 9 ((𝜑𝑠𝐴) → 𝑋 ∈ ℂ)
12 fourierdlem53.3 . . . . . . . . . . 11 (𝜑𝐴 ⊆ ℝ)
1312sselda 3966 . . . . . . . . . 10 ((𝜑𝑠𝐴) → 𝑠 ∈ ℝ)
1413recnd 10663 . . . . . . . . 9 ((𝜑𝑠𝐴) → 𝑠 ∈ ℂ)
15 fourierdlem53.d . . . . . . . . . 10 (𝜑𝐷 ∈ ℂ)
1615adantr 483 . . . . . . . . 9 ((𝜑𝑠𝐴) → 𝐷 ∈ ℂ)
17 fourierdlem53.sned . . . . . . . . 9 ((𝜑𝑠𝐴) → 𝑠𝐷)
1811, 14, 16, 17addneintrd 10841 . . . . . . . 8 ((𝜑𝑠𝐴) → (𝑋 + 𝑠) ≠ (𝑋 + 𝐷))
1918neneqd 3021 . . . . . . 7 ((𝜑𝑠𝐴) → ¬ (𝑋 + 𝑠) = (𝑋 + 𝐷))
209adantr 483 . . . . . . . . 9 ((𝜑𝑠𝐴) → 𝑋 ∈ ℝ)
2120, 13readdcld 10664 . . . . . . . 8 ((𝜑𝑠𝐴) → (𝑋 + 𝑠) ∈ ℝ)
22 elsng 4574 . . . . . . . 8 ((𝑋 + 𝑠) ∈ ℝ → ((𝑋 + 𝑠) ∈ {(𝑋 + 𝐷)} ↔ (𝑋 + 𝑠) = (𝑋 + 𝐷)))
2321, 22syl 17 . . . . . . 7 ((𝜑𝑠𝐴) → ((𝑋 + 𝑠) ∈ {(𝑋 + 𝐷)} ↔ (𝑋 + 𝑠) = (𝑋 + 𝐷)))
2419, 23mtbird 327 . . . . . 6 ((𝜑𝑠𝐴) → ¬ (𝑋 + 𝑠) ∈ {(𝑋 + 𝐷)})
258, 24eldifd 3946 . . . . 5 ((𝜑𝑠𝐴) → (𝑋 + 𝑠) ∈ (dom (𝐹𝐵) ∖ {(𝑋 + 𝐷)}))
2625ralrimiva 3182 . . . 4 (𝜑 → ∀𝑠𝐴 (𝑋 + 𝑠) ∈ (dom (𝐹𝐵) ∖ {(𝑋 + 𝐷)}))
27 eqid 2821 . . . . 5 (𝑠𝐴 ↦ (𝑋 + 𝑠)) = (𝑠𝐴 ↦ (𝑋 + 𝑠))
2827rnmptss 6880 . . . 4 (∀𝑠𝐴 (𝑋 + 𝑠) ∈ (dom (𝐹𝐵) ∖ {(𝑋 + 𝐷)}) → ran (𝑠𝐴 ↦ (𝑋 + 𝑠)) ⊆ (dom (𝐹𝐵) ∖ {(𝑋 + 𝐷)}))
2926, 28syl 17 . . 3 (𝜑 → ran (𝑠𝐴 ↦ (𝑋 + 𝑠)) ⊆ (dom (𝐹𝐵) ∖ {(𝑋 + 𝐷)}))
30 eqid 2821 . . . 4 (𝑠𝐴𝑋) = (𝑠𝐴𝑋)
31 eqid 2821 . . . 4 (𝑠𝐴𝑠) = (𝑠𝐴𝑠)
32 ax-resscn 10588 . . . . . 6 ℝ ⊆ ℂ
3312, 32sstrdi 3978 . . . . 5 (𝜑𝐴 ⊆ ℂ)
3430, 33, 10, 15constlimc 41898 . . . 4 (𝜑𝑋 ∈ ((𝑠𝐴𝑋) lim 𝐷))
3533, 31, 15idlimc 41900 . . . 4 (𝜑𝐷 ∈ ((𝑠𝐴𝑠) lim 𝐷))
3630, 31, 27, 11, 14, 34, 35addlimc 41922 . . 3 (𝜑 → (𝑋 + 𝐷) ∈ ((𝑠𝐴 ↦ (𝑋 + 𝑠)) lim 𝐷))
37 fourierdlem53.c . . 3 (𝜑𝐶 ∈ ((𝐹𝐵) lim (𝑋 + 𝐷)))
3829, 36, 37limccog 41894 . 2 (𝜑𝐶 ∈ (((𝐹𝐵) ∘ (𝑠𝐴 ↦ (𝑋 + 𝑠))) lim 𝐷))
39 simpr 487 . . . . . . . . 9 ((𝜑𝑦 ∈ ran (𝑠𝐴 ↦ (𝑋 + 𝑠))) → 𝑦 ∈ ran (𝑠𝐴 ↦ (𝑋 + 𝑠)))
4027elrnmpt 5822 . . . . . . . . . 10 (𝑦 ∈ ran (𝑠𝐴 ↦ (𝑋 + 𝑠)) → (𝑦 ∈ ran (𝑠𝐴 ↦ (𝑋 + 𝑠)) ↔ ∃𝑠𝐴 𝑦 = (𝑋 + 𝑠)))
4140adantl 484 . . . . . . . . 9 ((𝜑𝑦 ∈ ran (𝑠𝐴 ↦ (𝑋 + 𝑠))) → (𝑦 ∈ ran (𝑠𝐴 ↦ (𝑋 + 𝑠)) ↔ ∃𝑠𝐴 𝑦 = (𝑋 + 𝑠)))
4239, 41mpbid 234 . . . . . . . 8 ((𝜑𝑦 ∈ ran (𝑠𝐴 ↦ (𝑋 + 𝑠))) → ∃𝑠𝐴 𝑦 = (𝑋 + 𝑠))
43 nfv 1911 . . . . . . . . . 10 𝑠𝜑
44 nfmpt1 5156 . . . . . . . . . . . 12 𝑠(𝑠𝐴 ↦ (𝑋 + 𝑠))
4544nfrn 5818 . . . . . . . . . . 11 𝑠ran (𝑠𝐴 ↦ (𝑋 + 𝑠))
4645nfcri 2971 . . . . . . . . . 10 𝑠 𝑦 ∈ ran (𝑠𝐴 ↦ (𝑋 + 𝑠))
4743, 46nfan 1896 . . . . . . . . 9 𝑠(𝜑𝑦 ∈ ran (𝑠𝐴 ↦ (𝑋 + 𝑠)))
48 nfv 1911 . . . . . . . . 9 𝑠 𝑦𝐵
49 simp3 1134 . . . . . . . . . . . 12 ((𝜑𝑠𝐴𝑦 = (𝑋 + 𝑠)) → 𝑦 = (𝑋 + 𝑠))
5013adant3 1128 . . . . . . . . . . . 12 ((𝜑𝑠𝐴𝑦 = (𝑋 + 𝑠)) → (𝑋 + 𝑠) ∈ 𝐵)
5149, 50eqeltrd 2913 . . . . . . . . . . 11 ((𝜑𝑠𝐴𝑦 = (𝑋 + 𝑠)) → 𝑦𝐵)
52513exp 1115 . . . . . . . . . 10 (𝜑 → (𝑠𝐴 → (𝑦 = (𝑋 + 𝑠) → 𝑦𝐵)))
5352adantr 483 . . . . . . . . 9 ((𝜑𝑦 ∈ ran (𝑠𝐴 ↦ (𝑋 + 𝑠))) → (𝑠𝐴 → (𝑦 = (𝑋 + 𝑠) → 𝑦𝐵)))
5447, 48, 53rexlimd 3317 . . . . . . . 8 ((𝜑𝑦 ∈ ran (𝑠𝐴 ↦ (𝑋 + 𝑠))) → (∃𝑠𝐴 𝑦 = (𝑋 + 𝑠) → 𝑦𝐵))
5542, 54mpd 15 . . . . . . 7 ((𝜑𝑦 ∈ ran (𝑠𝐴 ↦ (𝑋 + 𝑠))) → 𝑦𝐵)
5655ralrimiva 3182 . . . . . 6 (𝜑 → ∀𝑦 ∈ ran (𝑠𝐴 ↦ (𝑋 + 𝑠))𝑦𝐵)
57 dfss3 3955 . . . . . 6 (ran (𝑠𝐴 ↦ (𝑋 + 𝑠)) ⊆ 𝐵 ↔ ∀𝑦 ∈ ran (𝑠𝐴 ↦ (𝑋 + 𝑠))𝑦𝐵)
5856, 57sylibr 236 . . . . 5 (𝜑 → ran (𝑠𝐴 ↦ (𝑋 + 𝑠)) ⊆ 𝐵)
59 cores 6096 . . . . 5 (ran (𝑠𝐴 ↦ (𝑋 + 𝑠)) ⊆ 𝐵 → ((𝐹𝐵) ∘ (𝑠𝐴 ↦ (𝑋 + 𝑠))) = (𝐹 ∘ (𝑠𝐴 ↦ (𝑋 + 𝑠))))
6058, 59syl 17 . . . 4 (𝜑 → ((𝐹𝐵) ∘ (𝑠𝐴 ↦ (𝑋 + 𝑠))) = (𝐹 ∘ (𝑠𝐴 ↦ (𝑋 + 𝑠))))
6121, 27fmptd 6872 . . . . 5 (𝜑 → (𝑠𝐴 ↦ (𝑋 + 𝑠)):𝐴⟶ℝ)
62 fcompt 6889 . . . . 5 ((𝐹:ℝ⟶ℝ ∧ (𝑠𝐴 ↦ (𝑋 + 𝑠)):𝐴⟶ℝ) → (𝐹 ∘ (𝑠𝐴 ↦ (𝑋 + 𝑠))) = (𝑥𝐴 ↦ (𝐹‘((𝑠𝐴 ↦ (𝑋 + 𝑠))‘𝑥))))
632, 61, 62syl2anc 586 . . . 4 (𝜑 → (𝐹 ∘ (𝑠𝐴 ↦ (𝑋 + 𝑠))) = (𝑥𝐴 ↦ (𝐹‘((𝑠𝐴 ↦ (𝑋 + 𝑠))‘𝑥))))
64 fourierdlem53.g . . . . . 6 𝐺 = (𝑠𝐴 ↦ (𝐹‘(𝑋 + 𝑠)))
6564a1i 11 . . . . 5 (𝜑𝐺 = (𝑠𝐴 ↦ (𝐹‘(𝑋 + 𝑠))))
66 oveq2 7158 . . . . . . . 8 (𝑠 = 𝑥 → (𝑋 + 𝑠) = (𝑋 + 𝑥))
6766fveq2d 6668 . . . . . . 7 (𝑠 = 𝑥 → (𝐹‘(𝑋 + 𝑠)) = (𝐹‘(𝑋 + 𝑥)))
6867cbvmptv 5161 . . . . . 6 (𝑠𝐴 ↦ (𝐹‘(𝑋 + 𝑠))) = (𝑥𝐴 ↦ (𝐹‘(𝑋 + 𝑥)))
6968a1i 11 . . . . 5 (𝜑 → (𝑠𝐴 ↦ (𝐹‘(𝑋 + 𝑠))) = (𝑥𝐴 ↦ (𝐹‘(𝑋 + 𝑥))))
70 eqidd 2822 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝑠𝐴 ↦ (𝑋 + 𝑠)) = (𝑠𝐴 ↦ (𝑋 + 𝑠)))
7166adantl 484 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ 𝑠 = 𝑥) → (𝑋 + 𝑠) = (𝑋 + 𝑥))
72 simpr 487 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑥𝐴)
739adantr 483 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝑋 ∈ ℝ)
7412sselda 3966 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ)
7573, 74readdcld 10664 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝑋 + 𝑥) ∈ ℝ)
7670, 71, 72, 75fvmptd 6769 . . . . . . . 8 ((𝜑𝑥𝐴) → ((𝑠𝐴 ↦ (𝑋 + 𝑠))‘𝑥) = (𝑋 + 𝑥))
7776eqcomd 2827 . . . . . . 7 ((𝜑𝑥𝐴) → (𝑋 + 𝑥) = ((𝑠𝐴 ↦ (𝑋 + 𝑠))‘𝑥))
7877fveq2d 6668 . . . . . 6 ((𝜑𝑥𝐴) → (𝐹‘(𝑋 + 𝑥)) = (𝐹‘((𝑠𝐴 ↦ (𝑋 + 𝑠))‘𝑥)))
7978mpteq2dva 5153 . . . . 5 (𝜑 → (𝑥𝐴 ↦ (𝐹‘(𝑋 + 𝑥))) = (𝑥𝐴 ↦ (𝐹‘((𝑠𝐴 ↦ (𝑋 + 𝑠))‘𝑥))))
8065, 69, 793eqtrrd 2861 . . . 4 (𝜑 → (𝑥𝐴 ↦ (𝐹‘((𝑠𝐴 ↦ (𝑋 + 𝑠))‘𝑥))) = 𝐺)
8160, 63, 803eqtrd 2860 . . 3 (𝜑 → ((𝐹𝐵) ∘ (𝑠𝐴 ↦ (𝑋 + 𝑠))) = 𝐺)
8281oveq1d 7165 . 2 (𝜑 → (((𝐹𝐵) ∘ (𝑠𝐴 ↦ (𝑋 + 𝑠))) lim 𝐷) = (𝐺 lim 𝐷))
8338, 82eleqtrd 2915 1 (𝜑𝐶 ∈ (𝐺 lim 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016  wral 3138  wrex 3139  cdif 3932  wss 3935  {csn 4560  cmpt 5138  dom cdm 5549  ran crn 5550  cres 5551  ccom 5553  wf 6345  cfv 6349  (class class class)co 7150  cc 10529  cr 10530   + caddc 10534   lim climc 24454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fi 8869  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-fz 12887  df-seq 13364  df-exp 13424  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-plusg 16572  df-mulr 16573  df-starv 16574  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-rest 16690  df-topn 16691  df-topgen 16711  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534  df-mopn 20535  df-cnfld 20540  df-top 21496  df-topon 21513  df-topsp 21535  df-bases 21548  df-cnp 21830  df-xms 22924  df-ms 22925  df-limc 24458
This theorem is referenced by:  fourierdlem74  42459  fourierdlem75  42460  fourierdlem76  42461  fourierdlem84  42469
  Copyright terms: Public domain W3C validator